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Abstract

One of the most important primitive data types in modern data pro-
cessing is text. Text data are known to have a variety of inconsisten-
cies (e.g., spelling mistakes and representational variations). For that
reason, there exists a large body of literature related to approximate
processing of text. This monograph focuses specifically on the problem
of approximate string matching, where, given a set of strings S and a
query string v, the goal is to find all strings s ∈ S that have a user spec-
ified degree of similarity to v. Set S could be, for example, a corpus of
documents, a set of web pages, or an attribute of a relational table. The
similarity between strings is always defined with respect to a similar-
ity function that is chosen based on the characteristics of the data and
application at hand. This work presents a survey of indexing techniques
and algorithms specifically designed for approximate string matching.
We concentrate on inverted indexes, filtering techniques, and tree data
structures that can be used to evaluate a variety of set based and edit
based similarity functions. We focus on all-match and top-k flavors of
selection and join queries, and discuss the applicability, advantages and
disadvantages of each technique for every query type.



1
Introduction

Arguably, one of the most important primitive data types in modern
data processing is strings. Short strings comprise the largest percentage
of data in relational database systems, long strings are used to repre-
sent proteins and DNA sequences in biological applications, as well as
HTML and XML documents on the Web. In fact this very monograph
is safely stored in multiple formats (HTML, PDF, TeX, etc.) as a col-
lection of very long strings. Searching through string datasets is a fun-
damental operation in almost every application domain. For example,
in SQL query processing, information retrieval on the Web, genomic
research on DNA sequences, product search in eCommerce applica-
tions, and local business search on online maps. Hence, a plethora of
specialized indexes, algorithms, and techniques have been developed
for searching through strings.

Due to the complexity of collecting, storing and managing strings,
string datasets almost always contain representational inconsistencies,
spelling mistakes, and a variety of other errors. For example, a represen-
tational inconsistency occurs when the query string is ‘Doctors With-
out Borders’ and the data entry is stored as ‘Doctors w/o Borders’. A
spelling mistake occurs when the user mistypes the query as ‘Doctors
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Witout Borders’. Even though exact string and substring processing
have been studied extensively in the past and a variety of efficient string
searching algorithms have been developed, it is clear that approximate
string processing is fundamental for retrieving the most relevant results
for a given query, and ultimately improving user satisfaction.

How many times have we posed a keyword query to our favorite
search engine, only to be confronted by a search engine suggestion for
a spelling mistake? In a sense, correcting spelling mistakes in the query
is not a very hard problem. Most search engines use pre-built dictio-
naries and query logs in order to present users with meaningful sugges-
tions. On the other hand though, even if the query is correct (or the
search engine corrects the query) spelling mistakes and various other
inconsistencies can still exist in the web pages we are searching for,
hindering effective searching. Efficient processing of string similarity as
a primitive operator has become an essential component of many suc-
cessful applications dealing with processing of strings. Applications are
not limited to the realm of information retrieval and selection queries
only. A variety of other applications heavily depend on robust process-
ing of join queries. Such applications include, but are not limited to,
record linkage, entity resolution, data cleaning, data integration, and
text analytics.

The fundamental approximate text processing problem is defined as
follows:

Definition 1.1 (Approximate Text Matching). Given a text T

and a query string v one desires to identify all substrings of T that
have a user specified degree of similarity to v.

Here, the similarity of strings is defined with respect to a particular
similarity function that is chosen based on specific characteristics of
the data and application at hand. There exist a large number of simi-
larity functions specifically designed for strings. All similarity functions
fall under two main categories, set based and edit based. Set based simi-
larity functions (e.g., Jaccard, Cosine) consider strings as sets of tokens
(e.g., q-grams or words), and the similarity is evaluated with respect
to the number, position and importance of common tokens. Edit based
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similarity functions (e.g., Edit Distance, Hamming) evaluate the simi-
larity of strings as a function of the total number of edit operations that
are necessary to convert one string into the other. Edit operations can
be insertions, deletions, replacements, and transpositions of characters
or tokens.

Approximate text processing has two flavors, online and offline. In
the online version, the query can be pre-processed but the text can-
not, and the query is answered without using an index. A survey on
existing work for this problem was conducted by Navarro [54]. In the
offline version of the problem the text is pre-processed and the query
is answered using an index. A review of existing work for this problem
was conducted by Chan et al. [16].

Here, we focus on a special case of the fundamental approximate
text processing problem:

Definition 1.2 (Approximate String Matching). Given a set of
strings S and a query string v, one desires to identify all strings s ∈ S

that have a user specified degree of similarity to v.

The approximate string matching problem (which is also referred to as
the approximate dictionary matching problem in related literature) is
inherently simpler than the text matching problem, since the former
relates to retrieving strings that are similar to the query as a whole,
while the latter relates to retrieving strings that contain a substring that
is similar to the query. Clearly, a solution for the text matching problem
will yield a solution for the string matching problem. Nevertheless,
due to the simpler nature of approximate string matching, there is
a variety of specialized algorithms for solving the problem that are
faster, simpler, and with smaller space requirements than well-known
solutions for text matching. The purpose of this work is to provide an
overview of concepts, techniques and algorithms related specifically to
the approximate string matching problem.

To date, the field of approximate string matching has been devel-
oping at a very fast pace. There now exists a gamut of specialized data
structures and algorithms for a variety of string similarity functions
and application domains that can scale to millions of strings and can
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provide answers at interactive speeds. Previous experience has shown
that for most complex problems there is almost never a one size fits all
solution. Given the importance of strings in a wide array of applica-
tions, it is safe to assume that different application domains will benefit
from specialized solutions.

There are four fundamental primitives that characterize an indexing
solution for approximate string matching:

• The similarity function: As already discussed, there are two
types of similarity functions for strings, set based and edit
based.

• String tokenization: Tokenization is the process of decompos-
ing a string into a set of primitive components, called tokens.
For example, in a particular application a primitive compo-
nent might refer to a word, while in some other application a
primitive component might refer to a whole sentence. There
are two fundamental tokenization schemes, overlapping and
non-overlapping tokenization.

• The query type: There are two fundamental query types,
selections and joins. Selection queries retrieve strings sim-
ilar to a given query string. Join queries retrieve all simi-
lar pairs of strings between two sets of strings. There are
also two flavors of selection and join queries, all-match and
top-k queries. All-match queries retrieve all strings (or pairs
of strings) within a user specified similarity threshold. Top-k
queries retrieve the k most similar strings (or pairs of strings).
• The underlying index structure: There are two fundamental

indexing schemes, inverted indexes and trees. An inverted
index consists of a set of lists, one list per token in the token
universe produced by the tokenization scheme. A tree orga-
nizes strings into a hierarchical structure specifically designed
to answer particular queries.

Every approximate string indexing technique falls within the space
of the above parametrization. Different parameters can be used to
solve a variety of problems, and the right choice of parameters — or
combination thereof — is dependent only on the application at hand.
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This work explains in detail the available choices for each primitive, in
an effort to delineate the application space related to every choice.

For example, consider a relevant document retrieval application that
uses cosine similarity and token frequency/inverse document frequency
weights1 to retrieve the most relevant documents to a keyword query.
The application uses a set based similarity function, implying a word-
based, non-overlapping tokenization for keyword identification, a clear
focus on selection queries, and most probably an underlying inverted
index on keywords. Notice that this particular application is not related
to approximate matching of keywords. A misspelled keyword, either
in the query or the documents, will miss relevant answers. Clearly,
to support approximate matching of keywords, a relevant document
retrieval engine will have to use a combination of primitives.

As another example, consider an application that produces query
completion suggestions interactively, as the user is typing a query in
a text box. Usually, query completion is based on the most popular
queries present in the query logs. A simple way to enable query sugges-
tions based on approximate matching of keywords as the user is typing
(in order to account for spelling mistakes) is to use edit distance to
match what the user has typed so far as an approximate substring of
any string in the query logs. This application setting implies an edit
based similarity, possibly overlapping tokenization for enabling identi-
fication of errors on a per keyword level, focus on selection queries, and
either an inverted index structure built on string signatures tailored for
edit distance, or specialized trie structures.

The monograph is organized into eight sections. In the first four
sections we discuss in detail the fundamental primitives that charac-
terize any approximate string matching indexing technique. Section 2
presents in detail some of the most widely used similarity functions
for strings. Section 3 discusses string tokenization schemes. Section 4
gives a formal definition of the four primitive query types on strings.
Finally, Section 5 discusses the two basic types of data structures used
to answer approximate string matching queries. The next three sections
are dedicated to specialized indexing techniques and algorithms for

1 Token frequency is also referred to as term frequency.
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approximate string matching. Section 6 discusses set based similarity
algorithms using inverted indexes. Section 7 discusses set based simi-
larity algorithms using filtering algorithms. Finally, Section 8 discusses
edit based similarity algorithms using both inverted indexes and filter-
ing algorithms. Section 9 concludes the monograph.



2
String Similarity Functions

There are two types of similarity functions for strings, set based and
edit based. Set based similarity considers strings as sets of tokens and
evaluates the similarity of strings with respect to the similarity of the
corresponding sets. Edit based similarity considers strings as sequences
of characters (or tokens) by assigning absolute positions to each char-
acter (or token) and evaluating string similarity with respect to the
minimum number of edit operations needed to convert one sequence of
characters (or tokens) into the other.

2.1 Edit Based Similarity

Edit based similarity is a very intuitive measure for strings. The
similarity is determined according to the minimum number of edit
operations needed to transform one string into another. Let Σ be
an alphabet. Let string s = σ1 · · ·σ�,σi ∈ Σ∗. Primitive edit opera-
tions consist of insertions, deletions, and replacements of characters.
An insertion I(s, i,σ) of character σ ∈ Σ at position i of string s

results in a new string s′ of length � + 1,s′ = σ1 · · ·σi−1σσi · · ·σ�. A
deletion D(s, i) removes character σi resulting in a new string s′ of
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length � − 1,s′ = σ1 · · ·σi−1σi+1 · · ·σ�. Finally, a replacement R(s, i,σ)
replaces the character σi with character σ ∈ Σ resulting in string
s′ = σ1 · · ·σi−1σσi+1 · · ·σ�, of the same length �.

Definition 2.1 (Edit Distance). The edit distance E(s,r) between
two strings s,r is the minimum number of primitive operations (i.e.,
insertions, deletions, and replacements) needed to transform s to r.

Edit distance is also known as Levenshtein distance.
For example, let s =‘1 Laptop per Child’ and r = ‘One Lap-

top per Child’. Then E(s,r) = 3 since the sequence of operations
I(s,1, ‘n’), I(s,1, ‘O’),R(s,3, ’e’) results in string r, and there is no
shorter sequence of operations that can transform s into r.

Clearly, edit distance is symmetric. The minimum edits needed to
transform r into s is the inverse of that needed to transform s into
r(R(r,3, ‘1’),D(r,1),D(r,1) in this example). In addition, edit distance
satisfies the triangular inequality, i.e., E(s,r) ≤ E(s, t) + E(t,r). This is
easy to show using induction. Hence, edit distance is a metric.

The edit distance between two strings can be computed using
dynamic programming in O(|s|) space and O(|s|2) time for strings of
length |s|, while the most efficient known algorithm requires O(|s|)
space and O(|s|2/log|s|) time instead [52]. Clearly computing the edit
distance between strings is a very expensive operation. However, if the
goal is to test whether the edit distance between two strings is within
some threshold θ, then there exists a verification algorithm that runs
in O(θ) space and O(θ|s|) time, which is very efficient for small thresh-
olds θ. The idea is once more based on dynamic programming, but the
verification algorithm tests only the entries with offset no more than
θ from the diagonal in the dynamic programming matrix. The algo-
rithm is shown as Algorithm 2.1.1, and a sample execution between the
strings ‘1 Laptop’ and ‘One Laptop’ with θ = 2 is shown in Table 2.1.
The computation of the actual edit distance between the two strings
(as opposed to simply verifying whether the edit distance is smaller
than 2) could, in the worst case, require the full computation of the
dynamic programming matrix, as opposed to the constrained verifica-
tion algorithm.
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Algorithm 2.1.1: Edit Distance Verification (s,r,θ)

if ||s| − |r|| > θ : return false
Construct a table T of 2 rows and |r| + 1 columns
for j = 1 to min(|r| + 1,1 + θ) : T [1][j] = j − 1
Set m = θ + 1
for i = 2 to |s| + 1


for j = min(1, i − θ) to min(|r| + 1, i + θ)

do




d1 = (j < i + θ) ? T [1][j] + 1 : ∞
d2 = (j > 1) ? T [2][j − 1] + 1 : ∞
d3 = (j > 1) ? T [1][j − 1]+

(s[i − 1] = r[j − 1]) ? 0 : 1) : ∞
T [2][j] = min(d1,d2,d3)
m = min(m,T [2][j])

if m > θ : return false
for j = 0 to |r| + 1 : T [1][j] = T [2][j]

return true

Table 2.1. Sample execution of the dynamic pro-
gramming verification algorithm for edit distance
with threshold θ = 2. The algorithm returns false.

∅ O n e L a p t o p

∅ 0 1 2
1 1 1 2 3

2 2 2 3 3
L 3 3 3 4 3
a 4 4 4 4 3
p 5 5 5 4 3
t 6 6 5 4 3
o 7 6 5 4 3
p 7 6 5 4 3

A plethora of extensions to the basic edit distance exist. For exam-
ple, one can extend the primitive edit operations to include a transposi-
tion of two consecutive characters. This extended edit distance has been
shown to cover most spelling mistakes made by humans in written text.
One can also compute a normalized edit distance, defined as E(s,r)

max |s|,|r| ,
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that takes into account the actual length of the strings, since it is more
meaningful to allow larger edit distance thresholds for longer strings.
Another extension is to compute a weighted edit distance, where each
edit operation has its own weight. The weights can also depend on the
particular character being inserted, deleted, or substituted. One can
also compute a normalized version of weighted edit distance, which is
defined as the minimum fraction W (P )/|P |, where P is a sequence of
edit operations, W (P ) is the total weight of P , and |P | is the length
of P . More involved variations of edit distance allow whole substrings
to be replaced or moved with a unit cost as a primitive operation. A
similar idea is to allow the introduction of gaps with a unit cost depen-
dent on the length of the gap, to enable alignment of strings. Finally,
Hamming distance can be considered a special case of edit distance,
where only replacement operations are allowed.

Each variation of edit distance is designed with a specific applica-
tion in mind. For example, computing similarity of biological sequences,
where mutations are more likely to appear as a variation of several con-
secutive, rather than individual, nucleotides, necessitates the introduc-
tion of primitive edit operations on tokens. Similarly, performing local
alignment of DNA sequences where there might exist long sequences
of low complexity or noise introduced by evolutionary mutation that
should be ignored, necessitates the introduction of gaps as a primitive
operation.

Edit distance has been shown to work very well for a variety of
applications. Nevertheless, it does have some drawbacks that make it
insufficient in certain scenarios. First, edit distance does not inher-
ently discount mismatching substrings that might not be very impor-
tant from a practical perspective, in some data domains. For example,
consider very common words in the English language, like ‘the’; the edit
distance between ‘Feed the Children’ and ‘Feed Children’ is four, even
though from a practical viewpoint the two strings are the same. The
solution here is to use customized weighing schemes to alleviate these
problems, but in this case the computation of edit distance becomes
more expensive (efficient approximate solutions though do exist; for
example see BLAST [1]). A second inherent drawback of edit distance
is that, by construction, it is not amenable to word re-ordering. For
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example, the two strings ‘One Laptop per Child’ and ‘One Child per
Laptop’ have edit distance twelve. Clearly, a better way to compare
these two strings using edit distance is to first decompose them into
individual words and compare each word separately first, then deter-
mine the similarity between the complete strings as a weighted function
of matching words, their respective edit distance, and possibly their
relative positions in the two strings. Of course, the cost of compar-
ing the strings now becomes quadratic in the number of words in the
strings.

2.2 Set Based Similarity

Set based similarity decomposes strings into sets using a variety of
tokenization methods and evaluates similarity of strings with respect
to the similarity of their sets. A variety of set similarity functions can
be used for that purpose, all of which have a similar flavor: Each set
element (or token) is assigned a weight and the similarity between the
sets is computed as a weighted function of the tokens in the intersection
and/or the complement of the intersection of the sets. The application
characteristics heavily influence, first, the tokens to extract, second, the
token weights, and third, the type of similarity function used.

Strings are modeled as sequences of characters, nevertheless a string
can also be represented as a set or a multi-set of tokens, based on
the tokenization function used. Let Λ be a token universe. Let s =
λs

1λ
s
2 · · ·λs

m,λs
i ∈ Λ be a string consisting of a sequence of m tokens. This

definition is a generalization of the definition of strings as a sequence of
characters (recall that s = σ1 · · ·σ�). If the chosen tokenization returns
each character in the string as an individual token, then the two def-
initions are the same, and m = � = |s|. In general, notice that m �= |s|
(in other words, the number of tokens in s is not always equal to the
number of characters in s). In the rest, for clarity we will always refer
to the number of characters in s with |s| and the number of tokens in
s with ‖s‖0 (i.e., the L0-norm of set s), irrespective of the context of
the similarity function and the specific tokenization used.

Implicitly, each token in the sequence above is assigned a posi-
tion in the string. A more explicit way of representing the string
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as a sequence of tokens is to use a set of token/position pairs
s = {(λs

1,1), . . . ,(λs
m,m)}. A weaker string representation is to sacri-

fice the positional information and only preserve the number of times
each token appears in the string.

Definition 2.2 (Token Frequency). The token frequency fs(λ) is
the number of occurrences of token λ in string s. When clear from
context, we simply write f(λ) to refer to the token frequency of λ in a
certain string.

Using token frequencies a string can be represented as the set s =
{(λs

1,f(λs
1)), . . . ,(λ

s
n,f(λs

n))} (notice that n ≤m). Here the order of
tokens is lost. We refer to this representation as a frequency-set of
tokens. An even weaker representation is to discard the token frequency
and consider strings as simple sets of tokens, i.e., s = {λs

1, . . . ,λ
s
n}. We

differentiate between these three string representations as sequences,
frequency-sets, and sets.

It should be stressed here that all three representations are explic-
itly defined to be sets of elements (as opposed to multi-sets or bags).
Hence, in what follows, all intersection and union predicates operate
on sets. Notice also that the most general representation of the three
is sequences. When indexing sequences, one can easily disregard the
positional information of the tokens and treat the strings either as
frequency-sets or sets. Obviously, the particular interpretation of a
string as a sequence, a frequency-set or a set has a significant influ-
ence on the semantics of the similarity between strings, with sequences
being the most strict interpretation (strings not only have to agree on
a large number of tokens being similar, but the tokens have to have
similar positions within the string as well), and sets being the loosest
(the similarity of strings depends only on the number of tokens shared,
rather than the position or the multiplicity of those tokens).

Let W :Λ→ R
+ be a function that assigns a positive real value as

a weight of each token in Λ. The simplest function for evaluating the
similarity between two strings is the weighted intersection of the token
sequences.
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Definition 2.3 (Weighted Intersection on Sequences). Let
s = {(λs

1,1), . . . ,(λs
m,m)}, r = {(λr

1,1), . . . ,(λr
n,n)}, λs

i ,λ
r
i ∈ Λ, be two

sequences of tokens. The weighted intersection of s and r is defined as

I(s,r) =
∑

(λ,p)∈s∩r

W (λ).

The intuition here is simple. If two strings share enough heavy
tokens/position pairs or a large number of light token/position pairs
then the strings are potentially very similar. Clearly, intersection is a
symmetric similarity measure. This definition uses the absolute posi-
tion of tokens within the sequences; if the common token does not
appear in exactly the same position within the two strings then it is
not included in the intersection. For example, the two sequences ‘The
Bill & Melinda Gates Foundation’ and ‘The Melinda & Bill Gates Foun-
dation’ have only four token/position pairs in common. One can extend
the definition to consider edit based similarity, where the distance in
the position of a common token between two strings is allowed to be
within user specified bounds, instead of requiring it to be exactly the
same.

Depending on application characteristics, it might be important to
consider similarity of strings without regard for token positions. For
example, when tokens are words and word order is not important (con-
sider ‘The Bill & Melinda Gates Foundation’ and ‘The Melinda & Bill
Gates Foundation’), or when one is interested in evaluating similarity
on substrings (consider ‘American Red Cross’ and ‘Red Cross’). For
that purpose weighted intersection can be defined on frequency-sets.

Definition 2.4 (Weighted Intersection on Frequency-sets). Let
s = (λs

1,f(λs
1)), . . . ,(λ

s
m,f(λs

m)), r = (λr
1,f(λr

1)), . . . ,(λ
r
n,f(λr

n)),λs
i ,λ

r
i ∈

Λ, be two frequency-sets of tokens. The weighted intersection of s and
r is defined as

I(s,r) =
∑

λ∈s∩r

min(fs(λ),fr(λ))W (λ).
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Notice that this definition implicitly treats frequency-set intersec-
tion as intersection on bags of tokens, by virtue of the min operation. In
other words, two frequency-sets do not have to agree both on the token
and the exact frequency of that token, for the token to be considered
in the intersection.

Finally, the definition can be modified to disregard token positions
and multiplicity.

Definition 2.5 (Weighted Intersection on Sets). Let s = {λs
1, . . .,

λs
m}, r = {λr

1, . . . ,λ
r
n},λs

i ,λ
r
i ∈ Λ, be two sets of tokens. The weighted

intersection of s and r is defined as

I(s,r) =
∑

λ∈s∩r

W (λ).

Representing strings as sequences, frequency-sets or sets of tokens is
application dependent and is applicable for all similarity functions
introduced below. In the rest we refer to strings as sequences, which is
the most general case. Extending the definitions to frequency-sets and
sets is straightforward.

Notice that the definitions above do not take into account the weight
or number of tokens that the two strings do not have in common (i.e.,
in the complement of their intersection). In certain applications, it is
required for strings to have similar lengths (either similar number of
tokens or similar total token weight). One could use various forms of
normalization to address this issue. A simple technique is to divide the
weighted intersection by the maximum sequence weight.

Definition 2.6 (Normalized Weighted Intersection). Let s =
λs

1 · · ·λs
m, r = λr

1 · · ·λr
n be two sequences of tokens. The normalized

weighted intersection of s and r is defined as

N (s,r) =
‖s ∩ r‖1

max(‖s‖1,‖r‖1) ,

where ‖s‖1 =
∑‖s‖0

i=1 W (λs
i ) (i.e., the L1-norm of token sequence s).
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One could also simply normalize by the length of the strings
max(|s|, |r|) or even by the number of tokens in the strings max(n,m).

A formulation that normalizes by the weight of tokens in the union
of the two strings is the Jaccard similarity.

Definition 2.7(Jaccard Similarity). Let s = λs
1 · · ·λs

m, r = λr
1 · · ·λr

n

be two sequences of tokens. The Jaccard similarity of s and r is defined
as

J (s,r) =
‖s ∩ r‖1
‖s ∪ r‖1 =

‖s ∩ r‖1
‖s‖1 + ‖r‖1 − ‖s ∩ r‖1 .

Here, the similarity between two strings is normalized by the total
weight of the union of their token sets. The larger the weight of the
tokens that the two strings do not have in common is, the smaller the
similarity becomes. The similarity is maximized (i.e., becomes equal
to one) only if the two sequences are the same. Jaccard similarity is a
metric.

One can also define a non-symmetric notion of Jaccard similarity,
commonly referred to as Jaccard containment.

Definition 2.8 (Jaccard Containment). Let s = λs
1 · · ·λs

m, r =
λr

1 · · ·λr
n be two sequences of tokens. The Jaccard containment of s

and r is defined as

Jc(s,r) =
‖s ∩ r‖1
‖s‖1 .

The Jaccard containment quantifies the containment of set s in set r.
Jaccard containment is maximized if and only if s ⊆ r.

A related set similarity function is the Dice similarity.

Definition 2.9 (Dice Similarity). Let s = λs
1 · · ·λs

m, r = λr
1 · · ·λr

n be
two sequences of tokens. The Dice similarity of s and r is defined as

D(s,r) =
2‖s ∩ r‖1
‖s‖1 + ‖r‖1 .

Dice is maximized if and only if the two sequences are the same.
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Another extension of weighted intersection that takes into account
the total weight of each token sequence is the cosine similarity.
Cosine similarity is the inner product between two vectors. Each token
sequence can be represented conceptually as a vector in the high dimen-
sional space defined by the token universe Λ (or the cross-product
Λ × N for token/position pairs). For example, set s can be represented
as a vector of dimensionality |Λ|, where each vector coordinate λ is
W (λ) if λ ∈ s and zero otherwise. This representation is commonly
referred to as the vector space model.

Definition 2.10 (Cosine Similarity). Let s = λs
1 · · ·λs

m, r = λr
1 · · ·λr

n

be two sequences of tokens. The cosine similarity of s and r is defined as

C(s,r) =
(‖s ∩ r‖2)2
‖s‖2‖r‖2 ,

where ‖s‖2 =
√∑‖s‖0

i=1 W (λs
i )2 (i.e., the L2-norm of token sequence s).

Cosine similarity is maximized if and only if the two sequences are the
same.

Clearly, Normalized Weighted Intersection, Jaccard, Dice, and
Cosine similarity are strongly related in a sense that they normal-
ize the similarity with respect to the weight of the token sequences.
Hence, there is no functional difference between those similarity func-
tions. The only difference is semantic and which function works best
depends heavily on application and data characteristics.

An important consideration for weighted similarity functions is the
token weighing scheme used. The simplest weighing scheme is to use
unit weights for all tokens. A more meaningful weighing scheme though,
should assign large weights to tokens that carry larger information con-
tent. As usual, the information content of a token is application and
data dependent. For example, a specific sequence of characters might be
a very rare word in the English language but a very popular occurrence
in non-coding DNA sequences, or a common sequence of phonemes in
Greek. Hence, a variety of weighing schemes have been designed, with
a variety of application domains in mind.
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The most commonly used weighing scheme for text processing is
based on inverse document frequency weights. Given a set of strings S

and a universe of tokens Λ, the document frequency df(λ),λ ∈ Λ is the
number of strings s ∈ S that have at least one occurrence of λ. The
inverse document frequency weight idf(λ) is

Definition 2.11 (Inverse Document Frequency Weight). Let S

denote a collection of strings and df(λ),λ ∈ Λ, the number of strings
s ∈ S with at least one occurrence of λ. The inverse document frequency
weight of λ is defined as:

idf (λ) = log
(

1 +
|S|

df(λ)

)
.

Alternative definitions of idf weights are also possible. Nevertheless,
they all have a similar flavor. The idf weight is related to the likelihood
that a given token λ appears in a random string s ∈ S. Very frequent
tokens have a high likelihood of appearing in every string, hence they
are assigned small weights. On the other hand, very infrequent tokens
have a very small likelihood of appearing in any string, hence they are
assigned very large weights. The intuition is that two strings that share
a few infrequent tokens must have a large degree of similarity.

Custom weighing schemes are more appropriate in other applica-
tions. A good example is the availability of expert knowledge regarding
the importance of specific tokens (e.g., in biological sequences). Another
example is deriving weights according to various language models.

A problem with using set based similarity functions is that by evalu-
ating the similarity between sets of tokens we lose the ability to identify
spelling mistakes and inconsistencies on a sub-token level. Very similar
tokens belonging to different strings are always considered as a mis-
match by all aforementioned similarity functions. One way to alleviate
this problem is to tokenize strings into overlapping tokens, as will be
discussed in more detail in Section 3. To alleviate some of the problems
associated with edit based and set based similarity functions, hybrid
similarity functions based on combinations thereof have also been con-
sidered. A combination similarity function is derived by defining the
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edit distance between sets of tokens (rather than sequences of char-
acters). In this scenario, the goal is to compute the sum of weighted
primitive operations needed to convert one set of tokens into another.
A primitive operation can be a deletion, an insertion, or a replacement
of a token. The weight of each operation might depend on the actual
weight of the token being inserted or deleted, or the weight and the
actual edit distance between the token being replaced and the token
replacing it. For example consider the two strings ‘Feed the Children’
and ‘Food Child’. From a practical viewpoint, the two strings are very
similar. From a set based similarity perspective the two strings do not
have any words in common (if stemming is not performed). From an
edit distance perspective the edit distance between the two strings is
very large. A combination distance would consider inserting the popu-
lar word ‘the’ with a very small cost (e.g., proportional to the idf weight
of the word), and replacing words ‘Food’ and ‘Child’, that are within
edit distance 2 and 3 from the respective ‘Feed’ and ‘Children’ using a
cost proportional to the actual edit distance.

2.3 Related Work

The edit distance concept was originally introduced by Levenshtein [47].
Wagner and Fischer [70] introduced the first algorithm for computing
edit distance with time and space complexity of O(|s||r|), where |s| and
|r| are the lengths of the two strings. Cormen et al. [25] presented a
space-efficient algorithm with space complexity O(max{|s|, |r|}). The
fastest edit distance algorithm, proposed by Masek and Patterson [52],
requires O(|s|2/ log |s|) time using a split-and-merge strategy to parti-
tion the problem. The edit distance verification algorithm was proposed
by Ukkonen [66]. There is a very rich literature of algorithms for com-
puting variations of the basic edit distance measure. One of the first
dynamic programming algorithms for aligning biological sequences was
proposed by Needleman and Wunsch [55]. A variation of this algo-
rithm that uses a substitution matrix and gap-scoring was proposed by
Smith and Waterman [61]. Edit distance with block moves was pro-
posed by Tichy [65]. Edit distance with reversals was discussed by
Kececioglu and Sankoff [41]. Edit distance allowing swaps has been
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studied by Amir et al. [2] and Lee et al. [42]. More recently, Cormode
and Muthukrishnan [26] introduced a variation of edit distance allow-
ing sub-strings to be moved with smaller cost. Chaudhuri et al. [18]
introduced a weighted edit distance for sets of tokens, based on the
idf weights of tokens. Approximating edit distance has also been well
studied in the literature of computer algorithms. Bar-Yossef et al. [9]
showed that an O(n3/7) approximation of edit distance can be obtained
in linear time. Ostrovsky and Rabani [56] proved that edit distance can
be probabilistically well preserved by Hamming distance after project-
ing the strings onto randomly selected subspaces. Andoni and Onak [3]
extended this idea by reducing both the space and time complexities.
The problem of approximate string matching using set based similar-
ity functions has received wide attention from the information retrieval
and core database communities. A detailed analysis and history of set
based similarity in information retrieval was conducted by Baeza-Yates
and Ribeiro-Neto [8].



3
String Tokenization

The type of string tokenization is a crucial design choice behind any
string processing framework. There are two fundamental tokenization
approaches: Non-overlapping and overlapping tokens. Non-overlapping
tokens are better for capturing similarity between short/long query
strings and long data strings (or documents) from a relevant document
retrieval perspective. Overlapping tokens are better at capturing simi-
larity of strings in the presence of spelling mistakes and inconsistencies
on a sub-token level.

3.1 Non-overlapping Tokens

The most basic instantiation of non-overlapping tokenization is to con-
sider tokens on word boundaries, sentences or any other natural bound-
ary depending on the particular domain of strings. For example, the
string s = ‘Doctors Without Borders’ would be decomposed into the
token set T = {‘Doctors’, ‘Without’, ‘Borders’}.

The similarity between two strings is evaluated according to the sim-
ilarity of their respective token sets. Notice that in this example minor
inconsistencies or spelling mistakes on a word level will significantly

287



288 String Tokenization

affect the similarity of strings. For instance, the Jaccard similarity
between strings ‘Doctors Without Borders’ and ‘Doctor Witout Bor-
der’ is zero, even though the two strings are practically the same. In
practice, the most common solution to such problems is, first, to use
stemming on the queries and the data, and second, to correct spelling
mistakes using a dictionary search. Neither of these solutions might be
applicable in certain situations. For example, for mathematical equa-
tions or source code, neither stemming nor a dictionary might always
make sense; for business names, stemming might result in unwanted
side effects (e.g., ‘Feed the Children’ becomes ‘food child’ and can result
in many irrelevant answers).

Non-overlapping tokenization results in token sets with storage
requirements equal or smaller than the storage size of the string itself.
The token set can be stored explicitly or, in some cases, hashing can
be used to represent tokens as integers.

3.2 Overlapping Tokens

In overlapping tokenization the idea is to extract all possible substrings
of a given length q of string s. The resulting substrings are more com-
monly referred to as q-grams.

Definition 3.1 (Set of positional q-grams). Let s = σ1 · · ·σ�,
σi ∈ Σ, be a string consisting of � characters. The set of positional
q-grams Gq(s) consists of all q-length substrings of s:

Gq(s) = {(σ1 · · ·σq,1),(σ2 · · ·σq+1,2), . . . ,(σ�−q+1 · · ·σ�, � − q + 1)}.

For example, let string s = ‘UNICEF’ and q = 3. The resulting set of
3-grams is G3(s) ={(‘UNI’, 1), (‘NIC’, 2), (‘ICE’, 3), (‘CEF’, 4)}.

Notice that for strings with length smaller than q the q-
gram set is empty. For simplicity of implementation, when work-
ing with q-grams, the q-grams are extracted over strings extended
with a special beginning and ending character # �∈ Σ. For exam-
ple, for q = 4 the string ‘WWF’ is extended to ‘###WWF###’
and G4(‘WWF ’) ={(‘###W’, 1), (‘##WW’, 2), (‘#WWF’, 3),
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(‘WWF#’, 4), (‘WF##’, 5), (‘F###’, 6)}. This representation also
has the advantage that the beginning and ending characters are repre-
sented explicitly using their own unique q-grams, hence capturing more
accurately the beginning and ending of the string.

One can also define generalizations to sets of grams of various sizes
(as opposed to fixed length q-grams); for example, variable length
grams, or all grams of length one up to length q. The bigger the gram
set is, the larger the information captured by the grams becomes. The
similarity of gram sets can be assessed using any set similarity function.
The advantage of gram sets is that they can be used to evaluate similar-
ity of strings on a substring level, where small inconsistencies or spelling
mistakes do not affect the similarity of the gram sets significantly.

On the other hand, since representing strings as gram sets increases
the representation size of the string, gram sets have the drawback of
significantly larger space requirements, even when hashing is used. In
addition, given the increased representation size, the evaluation of the
respective similarity functions becomes expensive, especially for long
strings.



4
Query Types

There are two fundamental query types in string processing: Selections
and Joins. There are two fundamental query strategies: All-matches
and Top-k matches.

4.1 Selection Queries

All-match selection queries return all data strings whose similarity with
the query string is larger than or equal to a user specified threshold.

Definition 4.1 (All-Match Selection Query). Given a string sim-
ilarity function Θ, a set of strings S, a query string v, and a positive
threshold θ, identify the answer set

A = {s ∈ S : Θ(v,s) ≥ θ}.

Top-k selection queries return, among all strings in the data, the k

strings with the largest similarity to the query.

Definition 4.2 (Top-k Selection Query). Given a string similarity
function Θ, a set of strings S, a query string v, and a positive integer k,
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identify the answer set A, s.t. |A| = k and ∀s ∈ A,s′ ∈ S \ A : Θ(v,s) ≥
Θ(v,s′).

Top-k queries are very useful in practice since in many applications it
is difficult to decide in advance a meaningful threshold θ for running
an all-match query.

Clearly, all-match queries are easier to evaluate than top-k queries,
given that a cutoff similarity threshold for top-k queries cannot be
decided in advance, making initial pruning of strings difficult. Nev-
ertheless, once k good answers have been identified (good in a sense
that the k-th answer has similarity sufficiently close to the correct k-th
answer) top-k queries essentially degenerate to all-match queries. Query
answering strategies typically try to identify k good answers as fast as
possible and subsequently revert to all-match query strategies.

4.2 Join Queries

Given two sets of strings and a user specified threshold, all-match join
queries return all pairs of strings in the cross product of the two sets,
with similarity larger than or equal to the threshold.

Definition 4.3 (All-Match Join Query). Given a string similarity
function Θ, two sets of strings S,R, and a positive threshold θ, identify
the answer set

A = {(s,r) ∈ S × R :Θ(s,r) ≥ θ}.

Top-k join queries return the k pairs with the largest similarity among
all pairs in the cross product.

Definition 4.4(Top-k Join Query). Given a string similarity func-
tion Θ, two sets of strings S,R, and a positive integer k, identify
the answer set A s.t. |A| = k and ∀(s,r) ∈ A and ∀(s′, r′) ∈ (S × R)\
A :Θ(s,r) ≥ Θ(s′, r′).



5
Index Structures

There are three major data structures used for indexing strings in order
to answer similarity queries: the Inverted Index, Tries, and B-trees.
Most algorithms are based on these three data structures that are
explained in detail next.

5.1 Inverted Indexes

Consider a collection of strings. Each string is represented as a sequence
of tokens. An example is shown in Table 5.1. Clearly, one can easily
invert this representation by constructing one set per token (instead
of one set per string), where each token set consists of all the strings
containing this token at a specified position.

Definition 5.1 (Inverted List). Given a token λ ∈ Λ the inverted
list L(λ) is the set of all strings s ∈ S s.t. λ ∈ s.

An inverted index is a collection of inverted lists, one list per token
in Λ. Storing the actual strings in the lists results in increased space
requirements, especially for long strings, since each string is duplicated
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as many times as the tokens it consists of. In most practical cases,
duplicating the strings is infeasible, and for that reason the lists usu-
ally contain only the string identifiers. The only advantage of stor-
ing the actual strings in the lists is that it eliminates the need of at
least one extra read operation for retrieving the actual string when it
is needed for further processing (e.g., reporting it to the user or for
computing a ranking weight). In applications with critical performance
requirements, duplicating strings might be acceptable (this is a typi-
cal performance/space tradeoff). In what follows we assume that only
the string identifiers are contained in the lists, and, in order to avoid
confusion, strings are denoted with lowercase characters (e.g., s) and
string identifiers using double dots (e.g., s̈).

Notice that an inverted index on frequency-sets forfeits the posi-
tional information by replacing it with frequency information (and as
a result reducing the size of the inverted index by collapsing multiple
entries of a given string identifier within an inverted list into one entry).
Finally, an inverted index on sets forfeits the frequency information as
well. Furthermore, one can extend the information stored with each
inverted list entry as well. For example, one can include the position of
the string within a document or the column and table containing the
string in a relational database. The addressing granularity stored along
with each inverted list entry comes at the cost of additional storage
space per list. Alternatively, one can retrieve this information by using
the string identifier to query a separate index for retrieving the actual
string and other associated information, on demand.

The inverted representation of the strings in Table 5.1 is shown
in Table 5.2 after stemming has been performed on the tokens and

Table 5.1. A collection of strings represented as a collection
of sets of tokens.

Tokens

String 1 2 3 4

s1 ‘Children’s’ ‘Food’ ‘Fund’
s2 ‘One’ ‘Laptop’ ‘per’ ‘Child’
s3 ‘Feed’ ‘the’ ‘Children’
s4 ‘International’ ‘Children’s’ ‘Found’
s5 ‘UNICEF’
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Table 5.2. An inverted representation
of the strings in Table 5.1 as inverted
lists. It is assumed that common stop
words and special characters have been
removed, stemming of words has occurred,
all tokens have been converted to lowercase,
and strings are considered as sequences
of tokens (resulting in string-identifier/
token-position pairs).

Token Inverted List

child (s̈1,1),(s̈2,4),(s̈3,3),(s̈4,2)
food (s̈1,2),(s̈3,1)
found (s̈4,3)
fund (s̈1,3)
international (s̈4,1)
one (s̈2,1)
laptop (s̈2,2)
unicef (s̈5,1)

common stop words have been eliminated. The two representations are
equivalent. With the first representation one can efficiently determine
all tokens contained in a given string (by simply scanning the set cor-
responding to that string), while with the second representation one
can efficiently identify all strings containing a specific token (by simply
scanning the set corresponding to that token).

The advantage of the inverted index is that it can be used to answer
union and intersection queries very efficiently. Given a query string, rep-
resented as a set of tokens, one can find all the strings containing at least
one of the query tokens by simply taking the union of inverted lists cor-
responding to these tokens. For example, given query q = {‘Children’,
‘International’}, the union of lists ‘child’ and ‘international’ results in
string identifiers s̈1, s̈2, s̈3, s̈4. To find all the strings containing all of the
query tokens one has to take the intersection of the lists corresponding
to the query tokens (and hence identify all data strings that are super
sets of the query string). For example the intersection of lists ‘child’
and ‘international’ results is string identifier s̈4. Hybrid list intersec-
tion strategies can be used to evaluate more involved string similarity
functions, as explained in detail in Section 6.
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5.2 Trees

5.2.1 Tries

A trie is a multi-way tree specifically designed for indexing strings in
main memory. Given a set of strings S, the trie consists of one path
per distinct string s ∈ S, of length |s| where each node in the path
corresponds to each character in s. Strings with the same prefixes share
the same paths. The leaf nodes of the paths store pointers to the actual
data (string identifiers, pointers to the location of the strings in a text
document, the table/column/row in a relational database, etc.). For
example, part of the trie corresponding to the strings of Table 5.1 is
shown in Figure 5.1. For static data, it is possible to compress a trie by
merging multiple nodes of the trie into a single node (using multiple
characters as the label of that node). This results in a Patricia trie (an
example is shown in Figure 5.2).
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Fig. 5.1 The trie for the strings in Table 5.1.
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Fig. 5.2 The Patricia trie corresponding to part of the trie of Figure 5.1.
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Searching the trie for an exact match is easy. Given a query string
v = σ1 · · ·σ� the trie is traversed from the root toward the leaves by
sequentially following the nodes labeled σ1 through σ�. If the search
stops before all � characters have been examined, then v does not exist
in the data. Clearly, the trie has excellent performance (linear in the
length of the query) for finding exact matches or prefixes of the query.
The trie cannot be used efficiently for substring matching (i.e., for
finding data strings that have v as a substring). Notice that the fanout
at every level of the trie can, in the worst case, be equal to |Σ|.

Several algorithms have been proposed for extending tries to answer
string similarity queries using edit distance, as will be discussed in
Section 8.

5.2.2 Suffix Trees

A suffix tree is a data structure based on tries that indexes all the
suffixes of all the strings s ∈ S. A string s = σ1 · · ·σm has a total of m

suffixes σ1 · · ·σm,σ2 · · ·σm, . . . ,σm. By building a trie over all suffixes in
S a suffix trie is produced.

The advantage of the suffix trie is that it can be used to find sub-
string matches very efficiently. Given a query v, a traversal of the suffix
trie will produce all strings s ∈ S that contain v as a substring. The
disadvantage is that the suffix trie consumes significantly more space
than a simple trie. Moreover, the construction algorithm of the suffix
trie has complexity O(N2), where N is the total length of the strings
in S (i.e., N =

∑
s∈S |s|), which is prohibitively large for long strings.

The size of the suffix trie can be reduced by collapsing all paths
consisting of nodes with only one child into a single node, similar to a
Patricia trie. The resulting Patricia suffix trie is more commonly called
a suffix tree. An example is shown in Figure 5.3.

The suffix tree has two advantages. First, the overall size of the
structure can be reduced to O(N), or linear in the length of the
strings to be indexed. Second, the suffix tree construction algorithm
also requires O(N) time and space, provided that the tree fits entirely
in main memory. (Suffix tries are more expensive to construct since
one node for every character of every suffix of every string has to be
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Fig. 5.3 The suffix tree for the strings ‘food’, ‘feed’, ‘fund’, and ‘found’.

instantiated in the worst case, as opposed to one node for every string
in the suffix tree in the worst case.)

The size of the suffix tree can be reduced even further by construct-
ing what is called a suffix array. The strings in S are concatenated into
one large string (using a special terminating character # �∈ Σ for every
string) and the position of every suffix is sorted in an array according
to the lexicographic ordering of the suffix. The resulting sorted array
of positions can be searched using binary search on the suffix pointed
to by each element in the array. The size of the suffix array (since
it contains only suffix positions) is very small. The drawback of the
suffix array is that the data strings need to be readily available for
comparison purposes, resulting in accesses with poor locality of refer-
ence. Advanced algorithms for improving the efficiency of suffix arrays
have been proposed, but the structure eventually resembles an inverted
index built over all suffixes in S.

Suffix tries, suffix trees, and suffix arrays were designed to be used
primarily for main memory processing. Fairly recently, a variety of
alternatives have been specifically designed for external memory pro-
cessing. Cache-conscious alternatives have also been proposed.

5.2.3 B-trees

B-trees are used for indexing one-dimensional data in secondary stor-
age. A B-tree is a multiway tree that contains n values k1 ≤ ·· · ≤ kn

that act as comparison keys and n + 1 pointers p1, . . . ,pn+1, per node.
Pointer pi points to a child node that is the root of a sub-tree con-
taining all data values that lie in the interval (ki−1,ki]. Data values



298 Index Structures

Fig. 5.4 A B-tree data structure for strings.

(or pointers to the actual data values) are stored in the leaves of the
tree. A simple B-tree structure is shown in Figure 5.4.

Assume that data values and keys are strings sorted in lexicographic
order. Given a query string v an exact string match query can be
answered by starting at the root of the B-tree and following the pointer
to the next level corresponding to the largest key s s.t. v ≤ s. We con-
tinue iteratively until we reach a leaf node. A simple scan of the leaf
node reveals whether v exists or not. An optimized specialization of
the B-tree specifically designed to index strings, called the string B-
tree, organizes each index node as a trie built over the keys of the node
(instead of a sorted list of keys), to reduce the computational cost. Spe-
cialized algorithms for answering approximate string matching queries
using B-trees will be covered in Section 8.

5.3 Related Work

Witten et al. [71], Baeza-Yates and Ribeiro-Neto [8], and Zobel and
Moffat [79] present very detailed discussions on inverted indexes. Baeza-
Yates and Ribeiro-Neto [8] also discuss suffix trees and suffix arrays.
Puglisi et al. [59] discuss all varieties of suffix array construction algo-
rithms. Comer [24] gives a detailed explanation of B-trees. The string
B-tree was proposed by Ferragina and Grossi [30].



6
Algorithms for Set Based Similarity Using

Inverted Indexes

In this section we will cover evaluation of set based similarity functions.
We will cover algorithms for selection and join queries. The brute-force
approach for evaluating selection queries has linear cost (computes all
pairwise similarities between the query string and the data strings),
while the brute-force approach for join queries has quadratic cost (com-
putes all pairwise similarities in the cross product of the two datasets).
Straightforwardly, big savings in computation cost can be achieved by
using an index structure (resulting in a typical computation cost versus
storage cost tradeoff).

6.1 All-Match Selection Queries

An all-match selection query returns all the strings in the dataset with
similarity to the query string that is larger than or equal to a user
specified threshold θ.

All of the set based similarity functions introduced in Section 2.2
can be computed easily using an inverted index. First, the data strings
are tokenized and an inverted index is build on the resulting tokens,
one list per token (an example using word tokens is shown in Tables 5.1
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and 5.2). If the strings are treated as sequences, then each list element
is a string-identifier/token-position pair. If the strings are treated as
frequency-sets each list element is a string-identifier/token-frequency
pair. Finally, if the strings are treated as sets, each list element is simply
a string identifier. In what follows we consider algorithms for sequences
only, since sequences are the most general representation of strings. The
concepts and algorithms can be straightforwardly modified to work on
frequency-set and sets.

Depending on the algorithm used to evaluate the chosen similarity
function, the lists can be stored sequentially as a flat file, using a B-tree
or a hash table. They can also be sorted according to string identifiers
or any other information stored in the lists (e.g., the Lp-norm of the
strings as will become clear shortly).

All-match selection queries can be answered quite efficiently using
an inverted index. To answer the query, first the query string is tok-
enized using exactly the same tokenization scheme that was used for
the data strings. The data strings satisfying the similarity threshold
need to have at least one token in common with the query, hence only
the token lists corresponding to query tokens need to be involved in the
search. This results in significant pruning compared to the brute-force
algorithm.

6.1.1 Lists Sorted in String Identifier Order

Let S be a set of strings over which we build an inverted index. Let
v = λv

1 · · ·λv
m,λv

i ∈ Λ be a query string and Lv = {L(λv
1), . . . ,L(λv

m)} be
the m lists corresponding to the query tokens. By construction, each
list L(λv

i ) contains all string identifiers of strings s ∈ S s.t. λv
i ∈ s. The

simplest algorithm for evaluating the similarity between the query and
all the strings in lists Lv, is to perform a multiway merge of the string
identifiers in Lv, to compute all intersections v ∩ s. This will directly
yield the Weighted Intersection similarity. Whether we compute the
weighted intersection on sequences, frequency-sets or sets depends on
whether the initial construction of the inverted index was done on
sequences, frequency-sets, or sets. Clearly, the multiway merge com-
putation can be performed very efficiently if the lists are already sorted
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in increasing (or decreasing) order of string identifiers. Moreover, the
algorithm has to exhaustively scan all lists in Lv in order to iden-
tify all strings with similarity exceeding threshold θ. Merging of sorted
lists has been studied extensively with respect to external sorting algo-
rithms (where the goal is to merge multiple sorted runs of files), and the
algorithms used for our purposes are exactly the same. The multiway

merge procedure for sequences is shown in Algorithm 6.1.1. The algo-
rithm assumes that inverted lists are constructed for sequences and that
each list is sorted primarily by token positions and secondarily by string
identifiers. With this simple optimization the algorithm can directly
seek to the first element in each list with token position equal to the
token position in the query, and stop reading from a particular list once
all elements with token position equal to that of the query have been

Algorithm 6.1.1: Multiway Merge(v,θ)

Tokenize the query: v = {(λv
1,1), . . . ,(λv

m,m)}
M is a heap of (s̈,Is, i) tuples, sorted on s̈

S is a stack of indexes i

M ← ∅,S ← {1, . . . ,m}
for i← 1 to m

do Seek to first element of L(λv
i ) with token position p = i

while M is not empty or S is not empty

do




while S is not empty

do




i = S.pop
(s̈,p) = L(λv

i ).next
if p > i then continue
if s̈ ∈M

then
{

(s̈,Is, j)←M.find(s̈)
Is+ = W (λv

i ) and S ← i

else M ← (s̈,W (λv
i ), i)

(r̈,Ir, j)←M.pop
if Ir ≥ θ then report (r̈,Ir)
S ← j
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examined. This optimization is irrelevant when indexing frequency-sets
or sets. In addition, one could allow token positions to vary within some
bounds of the corresponding token position in the query, in order to
evaluate sequence based similarity measures that allow tokens to have
slightly different positions in the query and the resulting data strings
(e.g., recall the example ‘The Bill & Melinda Gates Foundations’ and
‘The Melinda & Bill Gates Foundation’). An important detail that is
missing from Algorithm 6.1.1 for simplicity, is that whenever a given
token λ appears multiple times in different positions, the algorithm
should scan list L(λ) once, simultaneously for all positions. We omit
this detail in all subsequent algorithms as well.

ComputingNormalizedWeighted Intersection is also straightforward,
provided that the L1-norm of every data string is stored in the token lists
(see Definition 2.6). Hence, the lists store tuples string-identifier/token-
position/L1-norm per string for sequences, string-identifier/token-
frequency/L1-norm for frequency-sets, and string-identifier/L1-norm
for sets. Once again, if lists are already sorted in increasing order of string
identifiers, a multiway merge algorithm can evaluate the normalized
weighted intersection between the query and all relevant strings very effi-
ciently. The algorithm for computing normalized weighted intersection
essentially boils down to computing Weighted Intersection and hence is
very similar to Algorithm 6.1.1. Similar arguments hold for Jaccard, Dice
and Cosine similarity.

A number of optimizations are possible in case of unit weights (i.e.,
when ∀λ ∈ Λ,W (λ) = 1). For unit weights, the problem of identifying
strings with similarity exceeding the query threshold θ is equivalent to
the problem of identifying strings that appear in at least θ lists (since
all the lists have the same weight, it does not matter which list a string
appears in). In this case, in every iteration of the multiway merge algo-
rithm, first we pop all occurrences of the top element of the heap. If that
element occurs at least θ times we report it. Otherwise, assume that it
appears a total of x times. We pop from the heap another θ − 1 − x ele-
ments, identify the new top element of the heap, let it be r̈, and directly
skip to the first element s̈ ≥ r̈ in every token list (we can identify such
elements using binary search on the respective lists). Finally, we insert
the new top elements from every list for which a skip actually occurred
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to the heap, and repeat. An important observation here is that an ele-
ment that was popped from the heap might end up subsequently being
re-inserted to the heap, if it happens to be equal to the top element
of the heap after the θ − 1 total removals. This is possible given that
a skip operation might result in skipping backwards on some of the
lists. The correctness of the algorithm follows from the fact that if an
element appears in at least θ lists, eventually it will have to appear
at the top of the heap θ times (after potentially multiple reinsertions
to the heap). The advantage of the algorithm is that it will result in
many list elements that appear in fewer than θ lists to be instantly
skipped. Skipping might be beneficial for main memory processing or
lists stored on solid state drives, but not so for disk resident inverted
lists due to the cost of the random seeks required in order to skip over
elements.

A generalization of this algorithm is to utilize the fact that some
token lists are short and others are long. We divide the lists into two
groups, one with the τ longest lists and one with the rest of the lists.
We use the aforementioned optimized multiway merge algorithm on
the short lists to identify candidate strings that appear at least θ − τ

times. Then, we probe the τ long lists to verify the candidates. Depend-
ing on the query and the data at hand we can find an appropriate value
τ that will result in a good tradeoff between the cost of running the
multiway merge algorithm on the short lists and the subsequent prob-
ing of the long lists. An alternative approach that can be beneficial
in certain scenarios is to avoid probing the long lists altogether, and
simply retrieve all candidate strings produced by the multiway merge

algorithm on the short lists and evaluate their similarity with the query
directly. This algorithm can result in faster processing whenever the
total number of candidates produced is sufficiently small.

The optimized multiway merge algorithm can be generalized for all
similarity functions with unit token weights. It cannot be generalized
for arbitrary weights.

Nevertheless, there is another simple optimization for skipping list
elements in the case of arbitrary token weights. Given k elements in the
heap and the fact that each list has a fixed weight, if we keep track of the
list from which each element has been popped off from, we can directly
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determine the best possible score of the 1st, 2nd, ..., k − 1-th element
in the heap. If the best score of the i-th element is smaller than the
threshold, we can immediately pop the first i elements from the heap
and seek directly beyond element i in each affected list. Clearly, this
optimization also leads to an early termination condition. When a given
list becomes inactive, the best possible score of any unseen candidate
reduces by the weight of that list. When enough lists become inactive
such that the best possible weight of all unseen candidates falls below
the query threshold, the algorithm can safely terminate. We refer to
this algorithm as the optimized multiway merge algorithm.

6.1.2 Lists Sorted in Lp-norm Order

6.1.2.1 Normalized Weighted Intersection

For Normalized Weighted Intersection similarity we make the following
observation:

Lemma 6.1 (Normalized Weighted Intersection L1-norm
Filter). Given sets s,r and Normalized Weighted Intersection thresh-
old 0 < θ ≤ 1 the following holds:

N (s,r) ≥ θ⇔ θ‖r‖1 ≤ ‖s‖1 ≤ ‖r‖1
θ

.

Proof. For the lower bound, let s ⊆ r. Hence,

N (s,r) =
‖s ∩ r‖1

max(‖s‖1,‖r‖1) ≥ θ⇒ ‖s‖1‖r‖1 ≥ θ⇒ θ‖r‖1 ≤ ‖s‖1.

For the upper bound, let r ⊆ s. Hence,

N (s,r) =
‖s ∩ r‖1

max(‖s‖1,‖r‖1) ≥ θ⇒ ‖r‖1‖s‖1 ≥ θ⇒ ‖s‖1 ≤ ‖r‖1
θ

.

We can use the L1-norm filter to possibly prune strings appearing in
any list in Lv without the need to compute the actual similarity with
the query.
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For that purpose, we sort token lists in increasing (or decreasing)
order of the L1-norms of strings, rather than in string identifier order.
(Without loss of generality, in the rest we assume that the inverted lists
are always sorted in increasing order of Lp-norms.) Using Lemma 6.1,
we can directly skip over all candidate strings with L1-norm ‖s‖1 <

θ‖v‖1 (where ‖v‖1 is the L1-norm of the query) and stop scanning
a list whenever we encounter the first candidate string with L1-norm
‖s‖1 > ‖v‖1

θ .
Given that the lists are not sorted in increasing string identifier

order, the obvious choice is to use the classic threshold based algo-
rithms to compute the similarity of each string. Threshold algorithms
utilize special terminating conditions that enable processing to stop
before exhaustively scanning all token lists. This is easy to show if
the similarity function is a monotone aggregate function. Let αi(s,v) =

W (λv
i )

max(‖s‖1,‖v‖1) be the partial similarity of data string s and query token
λv

i . Then, N (s,v) =
∑

λv
i ∈s∩v αi(s,v). It can be shown that N (s,v) is

a monotone aggregate function, i.e., N (s,v) ≤ N (s′,v) if ∀i ∈ [1,m] :
αi(s,v) ≤ αi(s′,v). The proof is straightforward.

There are three threshold algorithm flavors. The first scans lists
sequentially and in a round robin fashion and computes the similarity
of strings incrementally. The second uses random accesses to compute
similarity aggressively every time a new string identifier is encountered
in one of the lists. The third uses combination strategies of both sequen-
tial and random accesses.

Since the sequential round robin algorithm computes similarity
incrementally, it has to temporarily store in main memory informa-
tion about strings whose similarity has only been partially computed.
Hence, the algorithm has a high book-keeping cost, given that the can-
didate set needs to be maintained as a hash table organized by string
identifiers. The aggressive random access based algorithm computes the
similarity of strings in one step and hence does not need to store any
information in main memory. Hence it has a very small book-keeping
cost, but on the other hand it has to perform a large number of ran-
dom accesses to achieve this. This could be a drawback on traditional
storage devices (like hard drives) but unimportant in modern solid
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state drives. Combination strategies try to strike a balance between
low book-keeping and a small number of random accesses. A simple
round robin strategy, called nra (for No Random Access algorithm) is
shown in Algorithm 6.1.2.

The algorithm keeps a candidate set M containing tuples consisting
of a string identifier, a partial similarity score, and a bit vector contain-
ing zeros for all query tokens that have not matched with the particular
string identifier yet, and ones for those that a match has been found.
The candidate set is organized as a hash table on string identifiers for
efficiently determining whether a given string has already been encoun-
tered or not. Lemma 6.1 states that for each list we only need to scan
elements within a narrow L1-norm interval. We skip directly to the
first element in every list with L1-norm ‖s‖1 ≥ θ‖v‖1 (assuming that
we are indexing sequences and that lists are primarily sorted by token
positions, we also skip to the first element with token position equal
to, or within some bounds from, the token position in the query; for
simplicity in what follows we ignore any positional information). The
algorithm proceeds by reading one element per list in every iteration,
from each active list. According to Lemma 6.1, if the next element read
from list L(λv

i ) has L1-norm larger than ‖v‖1
θ the algorithm flags L(λv

i )
as inactive. Otherwise, there are two cases to consider:

• If the string identifier read is already contained in the can-
didate set M , its entry is updated to reflect the new partial
similarity score. In addition, the bit vector is updated to
reflect the fact that the candidate string contains the par-
ticular query token. Also, the algorithm checks whether any
other lists have already become inactive, which implies one
of two things: If the candidate string contains the token cor-
responding to that list, then the bit vector has already been
set to one from a previous iteration and the partial similarity
score has been updated to reflect that fact; or the candidate
string does not contain that token, hence the bit vector can
be set to one without updating the partial similarity score
(essentially adding zero to the similarity score).
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Algorithm 6.1.2: nra(v,θ)

Tokenize the query: v = {(λv
1,1), . . . ,(λv

m,m)}
M is an empty map of (s̈,Ns,B1, . . .Bm) tuples (Bi are bits)
for i← 1 to m do Seek to first element of L(λv

i ) s.t. ‖s‖1 ≥ θ‖v‖1
while there exists an active L(λv

i )


f =∞,w = 0
for i← 1 to m

do




if L(λv
i ) is inactive then continue

(s̈,‖s‖1)← L(λv
i ).next

if ‖s‖1 > ‖v‖1
θ then make L(λv

i ) inactive and continue
f = min(f,‖s‖1),w = w + W (λv

i )
(s̈,Ns,B1, . . . ,Bm)←M.find(s̈)
for j ← 1 to m

if j = i or L(λv
j ) is inactive then Bj = 1

if s̈ ∈M

then




if B1 = 1, . . . ,Bm = 1

then




if (Ns + W (λv
i ))/max(‖s‖1,‖v‖1) ≥ θ

then report s̈,(Ns + W (λv
i ))/

max(‖s‖1,‖v‖1)
Remove from M

else M ← (s̈,Ns + W (λv
i ),B1, . . . ,Bm)

else
{
M ← (s̈,W (λv

i ),B1, . . . ,Bm)
for all (s̈,Ns,B1, . . . ,Bm) ∈M

do




for j ← 1 to m

if L(λv
j ) is inactive then Bj = 1

if B1 = 1, . . . ,Bm = 1

then




if Ns/max(‖s‖1,‖v‖1) ≥ θ then report s̈,Ns/

max(‖s‖1,‖v‖1)
Remove from M

if w
max(f,‖v‖1) < θ and M is empty then break
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• If the new string read is not already contained in M , a new
entry is created and reported as an answer or inserted in M ,
using reasoning similar to the previous step.

After one round robin iteration, the bit vector of each candidate in the
candidate set is updated, and candidates with fully set bit vectors are
reported as answers or evicted from the candidate set accordingly.

The algorithm can terminate early if two conditions are met. First
the candidate set is empty, which means no more viable candidates
whose similarity has not been completely computed yet exist. Second,
the maximum possible score of a conceptual frontier string that appears
at the current position in all lists cannot exceed the query threshold.

Lemma 6.2. Let La ⊆ Lv be the set of active lists. The terminating
condition

N f =

∑
L(λv

i )∈La
W (λv

i )

max(minL(λv
i )∈La

‖fi‖1,‖v‖1) < θ,

does not lead to any false dismissals.

Proof. The terminating condition leads to no false dismissals if and
only if the maximum possible normalized weighted intersection of any
unseen element is smaller than θ. To maximize N (s,v) we need to
maximize the numerator and minimize the denominator.

After each round of the nra algorithm, let the frontier element of
each list (i.e., the last element read on that list) be fi,1 ≤ i ≤m. Each
frontier element corresponds to a string fi with L1-norm ‖fi‖1. Let
La ⊆ Lv be the set of active lists (i.e., lists that have not been fully
traversed yet).

A conceptual frontier element that has not been seen yet has a pos-
sible maximum weighted intersection of

∑
L(λv

i )∈La
W (λv

i ). To minimize
the denominator, notice that N (s,v) is monotone decreasing in ‖s‖1.
Hence, for strings s,r s.t. ‖s‖1 < ‖r‖1 and ‖s ∩ v‖1 = ‖r ∩ v‖1 it holds
that N (s,v) ≥ N (r,v). Thus, the maximum possible similarity of an
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unseen candidate is

N f =

∑
L(λv

i )∈La
W (λv

i )

max(minL(λv
i )∈La

‖fi‖1,‖v‖1) .

Hence, N f < θ is a sufficient stopping condition that leads to no
false dismissals.

It is easy to see that a tighter bound for N f exists. This can be
achieved by examining the L1-norm of all frontier elements simultane-
ously and is based on the observation that

Observation 6.1. Given a string s with L1-norm ‖s‖1 and the
L1-norms of all frontier elements ‖fi‖1, we can immediately deduce
whether s potentially appears in list L(λv

i ) or not by a simple com-
parison: If ‖s‖1 < ‖fi‖1 and s has not been encountered in list L(λv

i )
yet, then s does not appear in L(λv

i ) (given that lists are sorted in
increasing order of L1-norms).

Let L(λv
j ) be a list s.t. ‖fj‖1 = minL(λv

i )∈La
‖fi‖1. Based on Obser-

vation 6.1, a conceptual string s with L1-norm ‖s‖1 = ‖fj‖1 that has
not been encountered yet, can appear only in list L(λv

j ). Thus

Lemma 6.3. Let La ⊆ Lv be the set of active lists. The terminating
condition

N f = max
L(λv

i )∈La

∑
L(λv

j )∈La:‖fj‖1≤‖fi‖1
W (λv

j )

max(‖fi‖1,‖v‖1) < θ,

does not lead to any false dismissals.

Proof. The proof is based on the proof of Lemma 6.2 and a simple
enumeration argument with at most m possible cases. Without loss of
generality, let La = {L(λv

1), . . . ,L(λv
m)} be the set of active lists and

‖f1‖1 < .. . < ‖fm‖1. Then, if N f < θ is true, we have the following
possible cases:

1. An unseen string s appears only in L(λv
1). By construction

‖s‖1 ≥ ‖f1‖1⇒N (s,v) ≤ N (f1,v)⇒N (s,v) < θ.
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2. An unseen string s appears only in L(λv
1),L(λv

2). By con-
struction ‖s‖1 ≥ ‖f2‖1⇒N (s,v) < θ.

3. ...
m. An unseen string s appears only in L(λv

1), . . . ,L(λv
m). By con-

struction ‖s‖1 > ‖fm‖1⇒N (s,v) < θ.

We can also use Observation 6.1 to improve the pruning power of
the nra algorithm by computing a best-case similarity for all candidate
strings before and after they have been inserted in the candidate set.
Strings whose best-case similarity is below the threshold can be pruned
immediately, reducing the memory requirements and the book-keeping
cost of the algorithm. The best-case similarity of a new candidate uses
Observation 6.1 to identify lists that do not contain that candidate.

Lemma 6.4. Given query v, candidate string s, and a subset of lists
Lv′ ⊆ Lv potentially containing s (based on Observation 6.1 and the
frontier elements fi), the best-case similarity score for s is

N b(s,v) =
‖v′‖1

max(‖s‖1,‖v‖1) .

It is important to note here that the above reasoning is correct if
and only if each string entry appears only once in every token list.
This is indeed the case for the frequency set and set representations,
but not always true for sequences, when the positional information is
disregarded (e.g., for computing the similarity of strings without regard
for positions). In that case, in order to compute the termination con-
dition correctly, we need to know for an arbitrary frontier element the
maximum number of times that the element might be contained in a
given list. The maximum frequency of an arbitrary entry per inverted
list can be computed at list construction time. Alternatively, we can
assume that a given token appears in a data string at most as many
times as it appears in the query, as a worst case scenario, and as a
result overestimate the similarity of the frontier elements.

An alternative implementation of the nra algorithm can postpone
updating candidate bit vectors and purging candidates from M until
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after all lists have been examined, in order to reduce the book-keeping
cost. The drawback of this implementation is that the candidate set
might become prohibitively large. A compromise between these two
extreme strategies is to postpone purging the candidate set until its
size becomes large enough. Which one is the best strategy depends,
in practice, on many variables, including the query token distribution.
For example, some token distributions might favor aggressive candidate
pruning, while others might render the purging step ineffective and
hence unnecessary after each round robin iteration.

An alternative threshold algorithm, based on random rather than
sequential accesses of lists, is to assume that token lists are sorted in
increasing Lp-norms but that there also exists one string identifier index
(e.g., aB-tree) per inverted list.Then, a randomaccess only algorithmcan
scan token lists sequentially and for every element probe the remaining
lists using the string identifier index to immediately compute the exact
similarity of the string. This algorithm, called ta (for Threshold Algo-
rithm), has similar terminating conditions as those used for nra.

The last threshold based strategy is to use a combination of nra

and random accesses. We run the nra algorithm as usual but after
each iteration we do a linear pass over the candidate set and use ran-
dom accesses to compute the exact similarity of the strings and empty
the candidate set. Another strategy is to run the nra algorithm until
Lemma 6.3 is satisfied, and then revert to random accesses to compute
the actual similarity of all candidates remaining in the candidate set.

Threshold algorithms are not only complex in terms of implemen-
tation but also result in very high book-keeping costs. An alternative
strategy is to use, once more, the optimized multiway merge algo-
rithm to compute the scores. In order to achieve this we sort lists
primarily by norms and secondarily by string identifiers. Then, we can
simply run the optimized multiway merge algorithm on the lists, and
also take into account the norm filter. The algorithm is similar to Algo-
rithm 6.1.1, but we first skip directly to the smallest element with norm
larger than or equal to the norm filter lower bound, and stop process-
ing a list once we encounter an element with norm larger than the
upper bound. Notice that the optimized multiway merge algorithm
implicitly guarantees that when a new element is inserted in the heap
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with L1-norm larger than the smallest L1-norm currently in the heap,
the list corresponding to that element effectively becomes inactive until
all other elements with L1-norms smaller than the norm of that element
are evicted from the heap. Essentially, the merging process operates on
a small range of L1-norms until enough lists become “inactive” to force
all elements within this range to be evicted from the heap and bring
about a new iteration of merging on the next range of L1-norms (or
early termination). As with nra, we use Lemma 6.4 to compute the
best case scores of elements when evicting entries from the heap and
Lemma 6.3 as the terminating condition. The algorithm is shown as
Algorithm 6.1.3 (for simplicity, the algorithm assumes that there does
not exist a single list whose weight is such that an element appearing
only in that list can satisfy the threshold).

6.1.2.2 Dice

Exactly the same norm based algorithms can be used for Dice simi-
larity. It is easy to show that Dice similarity is a monotone aggregate
function with partial similarity defined as αi(s,v) = W (λv

i )
‖s‖1+‖v‖1

. Hence,
all algorithms presented above can be adapted to Dice. In addition, it
is easy to prove the following lemmas.

Lemma 6.5 (Dice L1-norm Filter). Given sets s,r and Dice simi-
larity threshold 0 < θ ≤ 1 the following holds:

D(s,r) ≥ θ⇔ θ

2 − θ
‖r‖1 ≤ ‖s‖1 ≤ 2 − θ

θ
‖r‖1.

Proof. For the lower bound:
It holds that ‖s ∩ r‖1 ≤ ‖s‖1. Hence,

D(s,r) ≥ θ⇒ 2‖s ∩ r‖1
‖s‖1 + ‖r‖1 ≥ θ⇒ 2‖s‖1

‖s‖1 + ‖r‖1 ≥ θ⇒ θ

2 − θ
‖r‖1 ≤ ‖s‖1.

For the upper bound:
It holds that ‖s ∩ r‖1 ≤ ‖r‖1. Hence,

D(s,r) ≥ θ⇒ 2‖s ∩ r‖1
‖s‖1 + ‖r‖1 ≥ θ⇒ 2‖r‖1

‖s‖1 + ‖r‖1 ≥ θ⇒ ‖s‖1 ≤ 2 − θ

θ
‖r‖1.
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Algorithm 6.1.3: Optimized Multiway Merge(v,θ)

Tokenize the query: v = {(λv
1,1), . . . ,(λv

m,m)}
M is an empty heap of (s̈,‖s‖1,Is, i) tuples, sorted on ‖s‖1, s̈
S is a stack of indexes i

(f̈1,‖f1‖1) . . . ,(f̈m,‖fm‖1) are the frontier elements
for i← 1 to m do f̈i = 0,‖fi‖1 = θ‖v‖1 and S ← i

while M is not empty or S is not empty

do




if M is empty and enough lists are inactive then break
while S is not empty

do




i = S.pop
Seek to first element of L(λv

i ) s.t. ‖s‖1 ≥ ‖fi‖1
(s̈,‖s‖1) = L(λv

i ).next and f̈i = s̈,‖fi‖1 = ‖s‖1
if ‖s‖1 > ‖v‖1

θ then make L(λv
i ) inactive and

continue
if s̈ ∈M

then
{

(s̈,‖s‖1,Is, j)←M.find(s̈)
Is+ = W (λv

i ) and S ← i

else M ← (s̈,‖s‖1,W (λv
i ), i)

while M is not empty

do




(r̈,‖r‖1,Ir, j)←M.peek
if Ir/max(‖r‖1,‖v‖1) ≥ θ

then
{

Report (r̈,Ir/max(‖r‖1,‖v‖1))
M.pop,S ← j,break

else




τ = 0
for i← 1 to m

if i �= j and ‖fi‖1 ≤ ‖r‖1 and f̈i ≤ r̈

then τ+ = W (λv
i )

if (Ir + τ)/max(‖r‖1,‖v‖1) ≥ θ

then break
else M.pop,S ← j

(r̈,‖r‖1,Ir, j)←M.peek
for all i ∈ S do (‖fi‖1 < ‖r‖1) ? ‖fi‖1 = ‖r‖1, f̈i = r̈
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Lemma 6.6. Let La ⊆ Lv be the set of active lists. The terminating
condition

Df = max
L(λv

i )∈La

∑
L(λv

j )∈La:‖fj‖1≤‖fi‖1
2W (λv

j )

‖fi‖1 + ‖v‖1 < θ,

does not lead to any false dismissals.

Lemma 6.7. Given query v, candidate string s, and a subset of list
Lv′ ⊆ Lv potentially containing s, the best-case similarity score for s is

Db(s,v) =
2‖v′‖1

‖s‖1 + ‖v‖1 .

6.1.2.3 Cosine

Recall that cosine similarity is computed based on the L2-norm of the
strings. Once again, an inverted index is built where this time each list
element contains tuples (string-identifier/token-position/L2-norm) for
sequences, (string-identifier/token-frequency/L2-norm) for frequency-
sets and (string-identifier/L2-norm) for sets. Cosine similarity is a
monotone aggregate function with partial similarity αi(s,v) = W (λv

i )2

‖s‖2‖v‖2
.

An L2-norm filter also holds.

Lemma 6.8 (Cosine similarity L2-norm Filter). Given sets s,r

and Cosine similarity threshold 0 < θ ≤ 1 the following holds:

C(s,r) ≥ θ⇔ θ‖r‖2 ≤ ‖s‖2 ≤ ‖r‖2
θ

.

Proof. For the lower bound:
It holds that ‖s ∩ r‖2 ≤ ‖s‖2. Hence,

C(s,r) ≥ θ⇒ (‖s ∩ r‖2)2
‖s‖2‖r‖2 ≥ θ⇒ (‖s‖2)2

‖s‖2‖r‖2 ≥ θ⇒ θ‖r‖2 ≤ ‖s‖2.
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For the upper bound:
It holds that ‖s ∩ r‖2 ≤ ‖r‖2. Hence,

C(s,r) ≥ θ⇒ (‖s ∩ r‖2)2
‖s‖2‖r‖2 ≥ θ⇒ (‖r‖2)2

‖s‖2‖r‖2 ≥ θ⇒ ‖s‖2 ≤ ‖r‖1
θ

.

In addition

Observation 6.2. Given a string s with L2-norm ‖s‖2 and the L2-
norms of all frontier elements ‖fi‖2, we can immediately deduce
whether s potentially appears in list L(λv

i ) or not by a simple com-
parison: If ‖s‖2 < ‖fi‖2 and s has not been encountered in list L(λv

i )
yet, then s does not appear in L(λv

i ) (given that lists are sorted in
increasing order of L2-norms).

Hence

Lemma 6.9. Let La ⊆ Lv be the set of active lists. The terminating
condition

Cf = max
L(λv

i )∈La

∑
L(λv

j )∈La:‖fj‖2≤‖fi‖2
W (λv

j )
2

‖fi‖2‖v‖2 < θ,

does not lead to any false dismissals.

Lemma 6.10. Given query v, candidate string s, and a subset of lists
Lv′ ⊆ Lv potentially containing s, the best-case similarity score for s is

Cb(s,v) =
(‖v′‖2)2
‖s‖2‖v‖2 .

The actual algorithms in principle remain the same.

6.1.2.4 Jaccard

Jaccard similarity presents some difficulties. Notice that Jaccard is a
monotone aggregate function with partial similarity αi(s,v) = W (λv

i )
‖s∪v‖1

.
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Nevertheless, we cannot use this fact for designing termination condi-
tions for the simple reason that αi’s cannot be evaluated on a per token
list basis since ‖s ∪ v‖1 is not known in advance (knowledge of ‖s ∪ v‖1
implies knowledge of the whole string s and hence knowledge of ‖s ∩ v‖1
which is equivalent to directly computing the similarity). Recall that
an alternative expression for Jaccard is J (s,v) = ‖s∩v‖1

‖s‖1+‖v‖1−‖s∩v‖1
. This

expression cannot be decomposed into aggregate parts on a per token
basis, and hence is not useful either. Nevertheless, we can still prove
various properties of Jaccard that enable us to use all threshold algo-
rithms and the optimized multiway merge algorithm. In particular

Lemma 6.11(Jaccard L1-norm Filter). Given sets s,r and Jaccard
similarity threshold 0 < θ ≤ 1 the following holds:

J (s,r) ≥ θ⇔ θ‖r‖1 ≤ ‖s‖1 ≤ ‖r‖1
θ

.

Proof. For the lower bound:
It holds that ‖s ∪ r‖1 ≥ ‖r‖1 and ‖s ∩ r‖1 ≤ ‖s‖1. Hence,

J (s,r) ≥ θ⇒ ‖s ∩ r‖1
‖s ∪ r‖1 ≥ θ⇒ ‖s‖1‖r‖1 ≥ θ⇒ θ‖r‖1 ≤ ‖s‖1.

For the upper bound:
It holds that ‖s ∪ r‖1 ≥ ‖s‖1 and ‖s ∩ r‖1 ≤ ‖r‖1. Hence,

J (s,r) ≥ θ⇒ ‖s ∩ r‖1
‖s ∪ r‖1 ≥ θ⇒ ‖r‖1‖s‖1 ≥ θ⇒ ‖s‖1 ≤ ‖r‖1

θ
.

Lemma 6.12. Let La ⊆ Lv be the set of active lists. Let Ii =∑
L(λv

j )∈La:‖fj‖1≤‖fi‖1
W (λv

j ). The terminating condition

J f = max
L(λv

i )∈La

Ii

‖fi‖1 + ‖v‖1 − Ii
< θ,

does not lead to any false dismissals.
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Proof. Let x =
∑

λ∈s∩v W (λ) be the weight of tokens in the intersec-
tion of strings s and v. Let y =

∑
λ∈s\v W (λ) be the weight of tokens

contained only in s and z =
∑

λ∈v\s W (λ) be the weight of tokens con-
tained only in v. Then

J (s,v) =
x

x + y + z
.

It suffices to show that the function f(x,y,z) = x
x+y+z is monotone

increasing in x and monotone decreasing in y, for positive x,y,z. Then,
the proof is similar to that of Lemma 6.2 and 6.3.

Lemma 6.13. Function f(x,y,z) = x
x+y+z is monotone increasing in

x and monotone decreasing in y for all positive x,y,z.

Proof. Consider the function g(x) = 1/f(x). Function f(x) is monotone
increasing iff g(x) is monotone decreasing.

g(x) =
x + y + z

x
= 1 +

y

x
+

z

x
,

which is clearly monotone decreasing in x for positive x,y,z. Also f(y)
is monotone decreasing iff g(y) = 1/f(y) is monotone increasing, which
is clearly true for positive x,y,z.

Lemma 6.14. Given query v, candidate string s, and a subset of list
Lv′ ⊆ Lv potentially containing s, the best-case similarity score for s is

J b(s,v) =
‖v′‖1

‖s‖1 + ‖v‖1 − ‖v′‖1 .

6.1.2.5 Weighted Intersection

Consider now Weighted Intersection similarity (i.e., without normal-
ization). We have seen how to evaluate weighted similarity using
the optimized multiway merge strategy. We now explore if the
threshold algorithms can be used effectively for the same purpose.



318 Algorithms for Set Based Similarity Using Inverted Indexes

Notice that for weighted intersection the L1-norm does not play any
role in the similarity of two strings, hence we cannot design an L1-
norm filter to prune strings. Nevertheless, assume that we use the nra

algorithm to merge token lists. Weighted intersection is a monotone
aggregate function with partial weights αi(s,v) = W (λv

i ). Notice that
in this case the partial weights of all strings in a given token list are con-
stant (i.e., αi(s,v) = αi(s′,v),∀s,s′ ∈ L(λv

i )). An immediate conclusion
is that the terminating condition If =

∑l
i=1 W (λv

i ) < θ of the nra algo-
rithm will never be true (for 0 < θ ≤∑l

i=1 W (λv
i )). Hence, given that

neither an L1-norm filter nor a termination condition can be applied,
the nra algorithm will have to exhaustively scan all token lists.

6.1.3 Prioritization Across Lists

This section focuses on strategies that take advantage of specific access
priorities across inverted lists. Notice that for the multiway merge and
threshold based algorithms the order in which inverted lists are pro-
cessed is not important (e.g., the order of the round robin iterations
over the inverted lists for the nra algorithm). Nevertheless, the distribu-
tion of tokens in the data strings can help determine a more meaningful
ordering in which inverted lists are processed, that can yield significant
performance benefits.

Let the lists in Lv be sorted according to their respective token
weights, from heaviest to lightest. Without loss of generality let this
ordering be Lv = {L(λv

1), . . . ,L(λv
m)} s.t. W (λv

1) ≥ ·· · ≥W (λv
m). Con-

sidering the partial token weights of a given similarity function, since
α1(s,v) ≥ ·· · ≥ αm(s,v), the most promising candidates appear in list
L(λv

1); the second most promising appear in L(λv
2); and so on. This

leads to an alternative sequential algorithm, which we refer to here as
heaviest first. The algorithm exhaustively reads the heaviest token
list first, and stores all strings in a candidate set. The second to heaviest
list is scanned next. The similarity of strings that have already been
encountered in the previous list is updated, and new candidates are
added in the candidate set, until all lists have been scanned and the
similarities of all candidates have been computed. While a new list is
being traversed the algorithm prunes the candidates in the candidate
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set whose best-case similarity is below the query threshold. The best-
case similarity for every candidate is computed by taking the partial
similarity score already computed for each candidate after list L(λv

i )
has been scanned, and assuming that the candidate exists in all subse-
quent lists L(λv

i+1), . . . ,L(λv
m).

The important observation here is that we can compute a tighter
L1-norm filtering bound each time a new list is scanned. The idea is to
treat the remaining lists as a new query v′ = λv

i+1 . . .λv
m and recompute

the bounds using Lemma 6.1. The intuition is that the most promising
new candidates in lists L(λv

i+1), . . . ,L(λv
m), are the ones containing all

tokens λv
i+1, . . . ,λ

v
m and hence potentially satisfying s = v′.

Lemma 6.15(Norm Tightening). Without loss of generality, given
query string v = λv

1 · · ·λv
m s.t. W (λv

1) ≥ ·· · ≥W (λv
m) and query thresh-

old 0 < θ ≤ 1, for any viable candidate s s.t. s /∈ L(λv
1), . . .L(λv

i ) the
following holds:

• Normalized Weighted Intersection:

N (v,s) ≥ θ⇒ θ‖v‖1 ≤ ‖s‖1 ≤
‖λv

i+1 · · ·λv
m‖1

θ
.

• Jaccard:

J (v,s) ≥ θ⇒ θ‖v‖1 ≤ ‖s‖1 ≤ 1 + θ

θ
‖λv

i+1 · · ·λv
m‖1 − ‖v‖1.

• Dice:

D(v,s) ≥ θ⇒ θ

2 − θ
‖v‖1 ≤ ‖s‖1 ≤ 2

θ
‖λv

i+1 · · ·λv
m‖1 − ‖v‖1.

• Cosine:

C(v,s) ≥ θ⇒ θ‖v‖2 ≤ ‖s‖2 ≤
(‖λv

i+1 · · ·λv
m‖2)2

θ‖v‖2 .

Care needs to be taken though in order to accurately complete the
partial similarity scores of all candidates already inserted in the can-
didate set from previous lists, which can have L1-norms that do not
satisfy the recomputed bounds for v′. For that purpose the algorithm
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identifies the largest L1-norm in the candidate set and scans subsequent
lists using that bound. If a string already appears in the candidate set
its similarity is updated. If a string does not appear in the candidate
set (this is either a new string or an already pruned string) then the
string is inserted in the candidate set if and only if its L1-norm satisfies
the recomputed bounds based on v′.

To reduce the book-keeping cost of the candidate set, the algorithm
stores the set as a linked list, sorted primarily in increasing order of
L1-norm and secondarily in increasing order of string identifiers. Then
the algorithm can do a merge join of any token list and the candidate
list very efficiently in one pass. The complete algorithm is shown as
Algorithm 6.1.4.

The biggest advantage of the heaviest first algorithm is that it
can benefit from long sequential accesses, one list at a time. Notice that
both the nra and the multiway merge strategies have to access lists
in parallel. For traditional disk based storage devices, as the query size
increases and the number of lists that need to be accessed in parallel
increases, a larger buffer is required in order to prefetch entries from
all the lists and the seek time increases, moving from one list to the
next (this is not an issue for solid state drives or for main memory
processing).

Notice that the heaviest first strategy has another advantage
when token weights are assigned according to token popularity, as is
the case for idf weights. In that case, the heaviest tokens are rare tokens
that correspond to the shortest lists and the heaviest first strategy
is equivalent to scanning the lists in order of their length, shortest list
first. The advantage is that this keeps the size of the candidate set to a
minimum, since as the algorithm advances to lighter tokens, the proba-
bility of newly encountered strings (strings that do not share any of the
heavy tokens with the query) will satisfy the similarity threshold sig-
nificantly decreases. Such strings are therefore immediately discarded.
In addition, the algorithm terminates with high probability before long
lists have to be examined exhaustively.

This observation leads to an alternative strategy that uses a
combination of sequential accesses for short lists and random accesses
for long lists. The alternative algorithm is similar to the heaviest
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Algorithm 6.1.4: Heaviest First(v,θ)

Tokenize query: v = {(λv
1,1), . . . ,(λv

m,m)} s.t. W (λv
i ) ≥W (λv

j ), i < j

M is a list of (s̈,Ns,‖s‖1) sorted in (‖s‖1, s̈) order
M ← ∅
τ = ‖v‖1
for i← 1 to m


Seek to first element of L(λv
i ) with ‖s‖1 ≥ θ‖v‖1

(r̈,Nr,‖r‖1)←M.last
µ = max(‖r‖1, τ

θ )
τ = τ −W (λv

i )
(r̈,Nr,‖r‖1)←M.first
while not at end of L(λv

i )

do




(s̈,‖s‖1)← L(λv
i ).next

if ‖s‖1 > µ then break
while ‖r‖1 ≤ ‖s‖1 and r̈ �= s̈

do




if Nr + τ ≤ θmax(‖r|1,‖v‖1) then
remove r̈ from M

(r̈,Nr,‖r‖1) = M.next
if r̈ = s̈

then
{
M ← (r̈,Nr + W (λv

i ),‖r‖1)
else if W (λv

i ) + τ ≥ θmax(‖s‖1,‖v‖1)
then Insert (s̈,W (λv

i ),‖s‖1) at current position in M
while not at end of M

do




(r̈,Nr,‖r‖1) = M.next
if Nr + τ < θmax(‖r‖1,‖v‖1) then

remove r̈ from M

Report (s̈,Ns,‖s‖1) ∈M s.t. Ns ≥ θmax(‖s‖1,‖v‖1)

first algorithm with the only difference being that once the potential
score of an unseen candidate (a candidate that might be included in
all remaining lists) is smaller than the query threshold, the algorithm
reverts to random access mode that probes the remaining lists to
complete the scores of all candidates left in the candidate set. If an
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index on string identifiers is available on each of the lists in the suffix,
the algorithm needs to perform, on average, one random access per
candidate per remaining list. If an index is not available, then assum-
ing that lists are sorted in increasing norm order, the algorithm keeps
track of the smallest and largest norm in the candidate set, seeks to the
first list element with norm larger equal to the smallest norm and scans
each list as deep as the largest norm. Alternatively, binary search can
be performed. This strategy will help potentially prune a long head
and tail from each list in the suffix. Alternatively, if the size of the
remaining candidate set is small after the heaviest first strategy on the
shortest lists terminates, the algorithm can simply retrieve the strings
and compute the actual similarity.

Notice that in case of uniform token weights, it is meaningless to
order lists according to weights. In this special case lists are simply
sorted in increasing order of their lengths and all the algorithms dis-
cussed so far will work without any modifications, with similar ben-
efits. This results in a shortest-first prioritization of lists, which is of
independent interest, as was already mentioned above. In addition, all
Lp-norm filters are still applicable: L1-norm reduces to the L0-norm
and L2-norm reduces to the square root of the L0-norm.

Surprisingly, the heaviest first strategy can also help prune
candidates for Weighted Intersection similarity, based on the obser-
vation that strings containing the heaviest query tokens are more likely
to exceed the threshold. Let query string v = λv

1 · · ·λv
m and threshold

0 < θ ≤∑m
i=1 W (λv

i ), and assume without loss of generality that lists
are sorted in decreasing order of token weights (i.e., W (λv

1) ≥ . . . ≥
W (λv

m)). Assume that there exists a string s that is contained only
in a suffix L(λv

k), . . . ,L(λv
m) of token lists, whose aggregate weight∑m

i=k W (λv
i ) < θ. Clearly, such a string cannot exceed the query thresh-

old. An immediate conclusion is that

Lemma 6.16. Let query v = λv
1 · · ·λv

m s.t. W (λv
1) ≥ ·· · ≥W (λv

m), and
threshold 0 < θ ≤∑m

i=1 W (λv
i ). Let

π = arg max
1≤π≤m

|v|∑
i=π

W (λv
i ) ≥ θ.
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Let Pθ(v) = {λv
1, . . . ,λ

v
π} be the prefix of v and Sθ(v) = {λv

π+1, . . . ,λ
v
m}

be the suffix of v. Then, for any string s s.t. s ∩ Pθ(v) = ∅,I(s,v) < θ.

Proof. The proof appears in Section 7.1.

Hence, the only viable candidates have to appear in at least one of
the lists in the prefix L(λv

1), . . . ,L(λv
π). The heaviest first algorithm

exhaustively scans the prefix lists to find all viable candidates and then
probes the suffix lists to complete their scores using random access.

6.2 Top-k Selection Queries

A top-k selection query has to return the k data strings most similar to
the query (assuming no ties; if ties exist then algorithms either return
k strings by resolving ties arbitrarily, or return all ties).

6.2.1 Lists Sorted in String Identifier Order

It is easy to see that the multiway merge algorithm cannot be used to
answer top-k queries efficiently. This is mainly because the algorithm
identifies answers in order of their string identifier rather than in order
of their similarity with the query. One could use the multiway merge

algorithm in combination with a heap data structure to keep track of
the current top-k answers, but in order to guarantee that the true top-
k answers are returned, all token lists corresponding to query tokens
have to be exhaustively examined. In other words, there is no guarantee
that the answer with the largest similarity is not also the one with the
largest string identifier.

Nevertheless, one can still use the optimized multiway merge

algorithm described in Section 6.1.1 in order to potentially skip a large
number of entries from every list, during the list merging step.

It is easy to see that the algorithms designed for all-match selection
queries can be adapted for top-k queries, based on the observation that
top-k queries are essentially all-match selection queries with an adap-
tively increasing similarity threshold θ. An efficient top-k algorithm has
to identify a good approximation of the similarity of the k-th most sim-
ilar string as fast as possible, in order to converge to the correct top-k
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answers as efficiently as possible. Clearly, given a query, it is impossi-
ble to know a priori what the k-th similarity will be. Hence, we can
only resort to heuristics. A simple idea is to start merging lists until
the similarity of k elements has been computed. Then, we populate a
heap using those k candidates and use the k-th similarity as the query
threshold. The algorithm proceeds by maintaining the top k elements
in the heap as the similarity of new candidates is computed. The cur-
rent, always increasing, k-th similarity can be used by the optimized

multiway merge algorithm as a threshold for skipping elements from
the lists and terminating early.

6.2.2 Lists Sorted in Lp-norm Order

As we argued for all-match selection queries, Weighted Intersection
similarity cannot benefit from Lp-norm ordering, since the function
itself does not depend on any string norm.

Consider Normalized Weighted Intersection. Let token lists be
sorted in increasing order of L1-norms. We modify the nra algorithm
(see Algorithm 6.1.2) to maintain a heap H containing the k strings
with the largest partial similarity computed so far from all strings
appearing in candidate set M . The partial similarity of a string is
clearly a lower bound on the true similarity (not to be confused with
the best-case similarity computed using Lemma 6.4, which is an upper
bound on the similarity). Recall that nra maintains a best-case similar-
ity score N f for a conceptual frontier string. Clearly N f is an upper
bound on the similarity of any string that has not been encountered in
any of the lists yet. Let N k be the k-th smallest similarity score in heap
H. Straightforwardly, when N f < N k there are no strings s �∈M s.t.
N (s,v) ≥ N k, hence the algorithm can stop inserting new strings in M .
The algorithm can also evict from M strings whose best-case similarity
is smaller than N k, as both N k and the best-case similarity of strings
in M keep getting tighter. After the frontier condition has been met,
the algorithm needs to simply complete the partial similarity scores of
strings already in M in order to determine the final top-k answers.

The important question is how to seed the algorithm with a good
set of k initial candidates. The following observation is essential.
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Observation 6.3. The answers that are potentially more similar to
the query have L1-norm equal to ‖v‖1. Strings with ‖s‖1 = ‖v‖1 poten-
tially yield the maximum similarity which is equal to one. Intuitively,
the potential similarity of candidate strings decreases as the L1-norm
of strings diverges from that of the query in either direction.

Notice that we refer to potential similarity given that ‖s‖1 = ‖v‖1
does not necessarily imply that s = v since s and v might differ in a
number of tokens that happen to have equal weights resulting in equal
L1-norms.

Based on Observation 6.3, the most promising candidates are the
strings with L1-norms clustered around the L1-norm of the query. We
can exploit this intuition in order to find a better k-th similarity approx-
imation faster. In essence, instead of starting the round robin iterations
of the nra algorithm from the beginning of the lists, we start from the
first string s within each list s.t. ‖s‖1 = ‖v‖1. Then, we perform round
robin iterations in both directions, once towards the end of the lists
and once towards the beginning. When the algorithm has identified k

strings, the k-th smallest partial similarity becomes the query threshold
θ, and the algorithm can revert to normal all-match selection process-
ing by scanning lists within the L1-norm intervals given by Lemma
6.1. Notice that the algorithm is a heuristic. There is no guarantee
regarding the quality of the k-th partial similarity discovered using this
approach. In the best case the algorithm might immediately identify k

strings equal to the query and stop. In the worst case the algorithm
might be worse than vanilla nra (e.g., if it happens that the k-th most
similar string is either the first or the last element in all lists).

Another heuristic is to use an optimistic approach that assumes that
there are at least k data strings with similarity equal to one. Then, we
can run an all-match selection query using θ = 1. If the result contains
fewer than k answers, we reduce θ deterministically and restart the
previous query from where it stopped. We continue until k answers have
been produced. Once again, depending on the data and the particular
query this algorithm can either produce all answers within one iteration
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or might have to reduce the threshold to a very small value before
identifying the k-th answer.

Similar arguments hold for the optimized mutliway merge algo-
rithm based on sorting lists primarily by norms and secondarily by
string identifiers.

6.2.3 Prioritization Across Lists

Consider weighted intersection similarity first. As was shown for all-
match selection queries, the threshold based algorithms do not help
prune any strings when considering simple weighted intersection, hence
they do not work for top-k queries either. An alternative is to use the
heaviest first algorithm based on prefix and suffix lists. Assume
that lists are sorted in increasing order of string identifiers and that
the algorithm processes lists in decreasing order of the corresponding
token weights. Notice that for top-k queries there is no query thresh-
old specified, which is necessary for determining the lists in the pre-
fix/suffix sets. Nevertheless, we can assume that the initial threshold
is zero (which implies that all query lists belong to the prefix set) and
start scanning the first list. Each time an element is read, we probe the
remaining lists and complete its similarity. Given that lists are sorted in
increasing order of string identifiers we can use binary search to locate
the strings in these lists (alternatively, an index on string identifiers can
be built for each token list). Once we have retrieved k strings, we can
use the k-th smallest similarity as a new threshold based on which the
algorithm determines a new set of prefix/suffix lists. As the k-th simi-
larity keeps improving, lists move from the prefix to the suffix set. The
algorithm terminates once the similarity of all viable candidates in the
prefix set has been computed, and the top-k answers have been found.
Notice that once the k-th string has been retrieved the algorithm can
stop doing random accesses to compute the actual similarity of strings,
and it can revert to sequential accesses only. The algorithm terminates
once all lists in the current prefix set have been fully traversed and the
scores of all valid candidates have been computed. A better alternative
here might be to perform random accesses for completing the score of
all remaining viable candidates once the prefix lists have been fully
traversed, or to simply retrieve the candidate strings and compute the
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similarity directly, in case that a small number of candidates remains.
A version of the algorithm that performs random accesses only for the
first k candidates is shown in Algorithm 6.2.1.

We can straightforwardly adapt the heaviest first top-k algo-
rithm for all normalized similarity measures. The benefit of the
heaviest first algorithm over the nra algorithms is the fact that,
for disk based storage devices, it takes advantage of sequential accesses,
one list at a time.

6.3 All-Match Join Queries

An all-match join query between two datasets S,R returns all pairs s,r

in the cross-product S × R with similarity larger than a user specified
threshold θ.

Join queries can be answered using a block nested loop join algo-
rithm. Given two string datasets S and R, the algorithm scans S

until main memory is full and subsequently scans R and identifies
all pairs of strings s,r with similarity exceeding the query threshold.
The obvious drawback of this algorithm is that it needs to repeatedly
scan R as many times as the number of main memory partitions of S

produced.
In certain cases it is more efficient to use inverted indexes to per-

form the join. If neither dataset is indexed, we can index either dataset
and subsequently scan the un-indexed dataset and perform one selec-
tion query per string therein. If both inverted indexes can fit in main
memory, the largest set is indexed. If the inverted index of only one
dataset can fit in main memory, that set is indexed. If neither can fit
in main memory, the largest set is partitioned such that the inverted
index of each partition can fit in main memory. Then, the un-indexed
dataset is scanned as many times as the number of partitions cre-
ated. Notice that in order to create the inverted indexes, one of the
datasets needs to be sorted first (depending on the type of index used,
records will have to be sorted either in string identifier order or Lp-norm
order).

A simple partitioning strategy is based on sorting both datasets
S and R in increasing order of Lp-norms, and using norm filtering
to reduce the number of strings examined from R in each iteration.
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Algorithm 6.2.1: Heaviest First top-k(v,k)

Tokenize query: v = {(λv
1,1), . . . ,(λv

m,m)} s.t. W (λv
i ) ≥W (λv

j ), i < j

M is a list of (s̈,Is) pairs sorted in s̈ order
H is a min-heap of at most k pairs (s̈,Is), sorted in Is order
M ← ∅, H ← ∅
τ = ‖v‖1, θ = 0
for i← 1 to m


if τ < θ and M is empty then break
τ = τ −W (λv

i )
(r̈,Ir)←M.first
while not at end of L(λv

i )

do




(s̈)← L(λv
i ).next

while r̈ ≤ s̈

do
{
if Ir + τ ≤ θ then remove r̈ from M

(r̈,Ir)←M.next
if r̈ = s̈

then




M ← (r̈,Ir + W (λv
i ))

if |H| < k then H ← (r̈,Ir + W (λv
i ))

else if r̈ ∈ H then H.pop(r̈),H
← (r̈,Ir + W (λv

i ))
else if Ir + W (λv

i ) > θ then H

← (r̈,Ir + W (λv
i )),H.pop

else if W (λv
i ) + τ > θ

then




Insert (s̈,W (λv
i )) at current position in M

if |H| < k then H ← (s̈,W (λv
i ))

else if W (λv
i ) > θ thenH ← (s̈,W (λv

i )),H.pop
while not at end of M

do




(r̈,Nr,‖r‖1) = M.next
if Nr + τ < θmax(‖r‖1,‖v‖1) then

remove r̈ from M

Report (s̈,Is) ∈ H
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Algorithm 6.3.1: Sorted Block Nested Loop Join(S,R,θ)

Sort S,R in decreasing L1-norm order
I is an empty inverted index of string tokens
sf ← first string in S

for each s ∈ S


if memory is available

then
{

I ← s

sl ← s

else




for each r ∈ R s.t. θ‖sf‖1 ≤ ‖r‖1 ≤ ‖sl‖1
θ

do
{
I.Heaviest First(r,θ)

I ← ∅, I ← s

sf ← s

Once both datasets are sorted, we simply index the strings in S until
no more memory is available and keep a pointer to the first and last
strings indexed sf ,sl. Then we switch to a probe only phase and process
the strings in R in sorted order, within the appropriate norm intervals
only (e.g., assuming Jaccard similarity, within [θ‖sf‖1,‖sl‖1/θ]). After
the probe phase is complete, we discard the partial index of S and seek
back to element sl to continue indexing from where we left off. The
drawback of this algorithm is the extra cost of having to sort R. The
algorithm is shown in Algorithm 6.3.1.

More involved partitioning strategies that try to group strings into
clusters of similar strings can also be designed. In general, the par-
titioning strategy used, significantly affects the performance of join
processing. Notice that the hashing based partitioning approaches that
are used for equality joins cannot be applied for similarity joins because
this would typically imply that each record would need to be assigned
to multiple partitions. A good partitioning strategy should minimize
the number of partitions a record is assigned to, without making any
given partition large.

The only previously proposed partitioning algorithm is tailored for
weighted intersection and works in two phases. Let S and R be the
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datasets to be joined, and let an inverted index tailored for all-match
selection queries for weighted intersection similarity for S and R have
size Ws and Wr respectively. Assume that the largest inverted index
that can fit in main memory has size M , where M < Ws < Wr. The
first phase builds a compressed inverted index for R that can fit in
main memory. The compressed inverted index is used to identify quali-
fying clusters for each string in S. Subsequently, a fine-grained inverted
index is built on the qualifying clusters and used to answer the join
query.

The compressed inverted index is built by grouping together strings
with several overlapping tokens into clusters. The idea is to use pointers
to the clusters of strings in the inverted index (instead of pointers to the
strings themselves), thereby decreasing the length of the inverted lists.
Let C be a cluster of strings. The cluster is represented by the union of
tokens in all strings s ∈ C. Let ΛC denote the union of tokens of cluster
C. All inverted lists of the compressed inverted index corresponding to
tokens in ΛC contain a pointer to C. To answer a query, first the com-
pressed inverted index is scanned as usual to find all qualifying clusters;
a qualifying cluster needs to have weighted intersection similarity with
the query string larger than the threshold θ (i.e., I(v,C) ≥ θ). Then a
fine-grained query is executed on the strings of each qualifying cluster.

Initially, we need to build a good set of string clusters C such that
each cluster in C contains similar strings, and all clusters have approxi-
mately equal sizes. The algorithm first determines the maximum num-
ber of clusters and the average number of strings per cluster that
the compressed inverted index can hold in main memory. The algo-
rithm estimates the number of clusters as N = |R|×M

Wl
, and the average

number of strings per cluster as A = N under the assumption that
M ≥ √Wl (if this assumption is violated, the algorithm can do recur-
sive partitioning).

Next, the clusters are constructed as follows. The algorithm per-
forms a linear scan of R, and for each string r ∈ R, it chooses a clus-
ter C, which can be either an existing cluster with enough overlap with
r or a new cluster if |C| < N . Finding a cluster for each string r ∈ R

is based on a similarity function between r and that cluster. A simple
definition for the similarity of string r and cluster C is their weighted
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intersection similarity I(r,C). An interesting observation here is that
we can use the partially built compressed inverted index to identify
which existing cluster is the most similar to r. This is accomplished
by simply running a top-k selection query on the compressed inverted
index with query string r. In this case the top-k algorithm needs to
identify a cluster that contains fewer than A strings. We can identify
the top-k matches incrementally until a suitable cluster C is found.
In addition, if I(r,C) < φ, for a given threshold φ and |C| < N a new
cluster is created instead. Threshold φ can be computed as a function
of the average number of strings per cluster and the average number
of tokens per string in S ∪ R. Otherwise, r is assigned to cluster C.
A pointer to C is inserted in all the inverted lists of the compressed
inverted index corresponding to tokens in r that are not already con-
tained in ΛC . The algorithm also stores one record (r̈,C) per string
r in a hash table, which is needed in the querying phase. Finally, the
algorithm scans all strings s ∈ S and for each s queries the compressed
inverted index to find all qualifying clusters C such that I(s,C) ≥ θ.
These are the clusters containing strings that need to be joined with s.
The algorithm stores one record (C, s̈) per qualifying cluster in a hash
table. A detail here is that instead of computing the weighted intersec-
tion between a string and the clusters, we can use Jaccard similarity
without affecting the correctness of the algorithm. Jaccard similarity
will prevent large clusters from getting too large too fast.

In the second phase the algorithm creates one fine-grained inverted
index per cluster and computes the join results of each string s ∈ S

that needs to join with this cluster, by using the string/cluster and
qualifying-cluster/string hash tables built in phase one. The com-
pressed inverted index can be discarded at this stage. The algorithm
uses the available memory M to build an inverted index for a set of
clusters C ∈ C that fits in main memory. Each set of clusters is treated
as one join partition.

Notice that the algorithm described above cannot be extended for
Jaccard, Dice, or Cosine similarity. The main reason is that the idea is
based on a monotonicity property: If I(v,C) < θ then there does not
exist s ∈ C s.t. I(v,s) ≥ θ. It is easy to see that this property is not
true for Jaccard, Dice, or Cosine similarity.
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6.4 All-Match Self-join Queries

An all-match self-join query for a dataset S returns all pairs s,s′ in
the cross-product S × S with similarity larger than a user specified
threshold θ.

In case of self-join queries, if the dataset is not already indexed, an
alternative approach is based on indexing the dataset incrementally.
The procedure is shown in Algorithm 6.4.1.

The algorithm works for all similarity measures discussed in
Section 2.2. In addition, the multiway merge algorithm can be replaced
with any other selection algorithm (like nra, optimized multiway

merge, and heaviest first). Notice that for Algorithm 6.4.1 to work
we have to process the strings in a well defined order. For the multiway
merge algorithm the strings have to be processed in increasing or decreas-
ing order of string identifiers. For nra, optimized multiway merge,
and heaviest first, they have to be processed in increasing order of
L1-norms for Jaccard and Dice, and L2-norm for Cosine similarity.

Certain optimizations can be applied when the nra, optimized

multiway merge, or heaviest first algorithms are used. Concentrat-
ing on Jaccard, assume that strings are processed in increasing order of
their L1-norm. As a new string s is processed, we know that all subse-
quent strings will have L1-norm larger than or equal to the norm of s.
Hence, by using Lemma 6.11, we can safely remove from the head of all
inverted lists all entries corresponding to strings with L1-norm smaller
than θ‖s‖1. Clearly, none of the strings corresponding to these entries
will be candidates for any subsequent string. This helps save space by
decreasing the size of the inverted lists. Similar observations hold for
Dice and Cosine similarity.

Algorithm 6.4.1: Self-join(S,θ)

I is an empty inverted index of string tokens
for each s ∈ S{

I.Multiway Merge(s,θ)
I ← s
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In the rare case that the dataset is too large for the inverted index
to fit in main memory even with the index size reduction optimiza-
tion mentioned above (this could happen when a very large number
of strings have equal norms), a simple modification of the algorithm is
to index strings until no more main memory is available and keep a
pointer to the last string indexed, similarly to Algorithm 6.3.1. Then
the algorithm switches to a probe only phase and scans the rest of the
dataset within the appropriate norm bounds, producing all matching
pairs. Finally, the algorithm discards the existing index and continues
indexing strings from where it left off. The drawback of this algorithm
is that it might have to scan parts of the dataset multiple times. One
can also modify the partitioning strategy described in Section 6.3 to do
the self-join (with some possible optimizations) in the case of weighted
intersection similarity.

6.5 Top-k Join and Self-join Queries

A top-k join query between two datasets S,R returns the k pairs s,r

with similarity larger than any other pair in the cross-product S × R. A
top-k self-join query for a dataset S returns the k pairs s,s′ (s.t. s̈ �= s̈ ′)
with similarity larger than any other pair in the cross-product S × S.

The difficulty with top-k queries is that the similarity of the k-th
answer is not known in advance. A simple strategy for evaluating top-k
join (self-join) queries is to quickly identify k candidates and use the
k-th similarity as a threshold θ in order to answer the query using an
all-match join (self-join) algorithm. As the algorithm proceeds and the
similarity of the current k-th candidate converges toward the similarity
of the k-th most similar string, the search becomes more effective. All
the algorithms discussed for all-match join and self-join queries can be
used, with slight modifications, to answer top-k queries.

6.6 Index Construction

Inverted index construction might require several linear scans of the
data in some scenarios. The first step for constructing the inverted
index is to sort the data either in increasing/decreasing order of string
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identifiers or increasing/decreasing order of Lp-norms, depending on
the index being built.

Assume that the input datasets are too large to fit in memory. If
the sort order is according to string identifiers then an external sort
algorithm can be used to sort the data directly. Then, the token lists of
the inverted index are simply populated incrementally, as new strings
are processed in string identifier order.

On the other hand, if the sort order is according to Lp-norms, then
the algorithm has to compute the norms of each string first. Depending
on the nature of token weights used, computing the norms might require
at least one additional scan of the data. Consider for example idf based
weights. In order to compute idf based Lp-norms, the idf of each token
has to be computed first. Computing idfs requires scanning the data
to compute the document frequency of each token. Once the idfs have
been computed, an external sort algorithm can be used to sort the data.

An alternative approach is to avoid sorting the data initially.
Instead, we can incrementally populate the token lists as strings are
processed and tokenized out of order. After all strings are processed we
can sort each token list independently. The drawback of this approach
is that, provided that the cardinality of the token universe Λ is very
large, we might have to actively manage a very large number of token
lists, which can be very expensive. On the other hand, if the cardinality
of Λ is expected to be small then this simplistic approach can be faster
than external sorting of the input dataset. Notice also that if token
lists are maintained as B-trees, out of order processing of strings will
immediately result in properly sorted token lists. Nevertheless, in this
case every single insertion of a string entry in any token list results in a
random access. A better approach is, once again, to use external sorting
to sort the input dataset first, and bulk-load the B-trees corresponding
to the token lists as a final step.

6.7 Index Updates

Typically, inverted indexes are used for mostly static data. More often
than not, token lists are represented either by simple arrays in main
memory, or flat files in secondary storage, since these representations
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are space efficient and also enable very fast sequential processing of
list elements. On the other hand, inserting or deleting elements in the
token lists becomes expensive.

In situations where fast updates are important, token lists can be
represented by linked lists or binary trees in main memory, or B-trees in
external memory. The drawback is the increased storage cost both for
main memory and external memory structures, and also the fact that
external memory data structures do not support sequential accesses
over the complete token lists as efficiently as flat files. On the other
hand, the advantage is that insertions and deletions can be performed
very efficiently.

A subtle but very important point regarding updates arises when
considering token lists that contain Lp-norms. Recall that Lp-norms are
computed based on token weights. For certain token weighing schemes,
like idf weights, token weights depend on the total number of strings
overall and the total number of strings containing the given token.
As strings get inserted, deleted, or updated, both the total number
of strings and the number of strings containing a given token might
change, and as a result the weight of tokens can change as well as the
Lp-norms of strings that are not directly related with a given insertion,
deletion, or modification.

Consider for example idf weights, where the weight of a token is
a function of the total number of strings |S| (see Definition 2.11). A
single string insertion or deletion will affect the idfs of all tokens, and
hence render the Lp-norms of all entries in the inverted lists in need of
updating. For example, if we insert a string that contains token λ, the
idf weight W (λ) with change, and as a consequence, the Lp-norm of
all other strings already appearing in the index that happen to contain
λ will change. Hence, a single string update can result in a cascading
update effect on the token lists of the inverted index that could be very
expensive.

To alleviate the cost of updates in such scenarios a technique based
on delayed propagation of updates has been proposed. The idea is to
keep stale information in the inverted lists as long as certain guarantees
on the answers returned can be provided. Once the computed Lp-norms
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have diverged far enough from the true values such that the guarantees
no longer hold, the pending updates are applied in batch.

The propagation algorithm essentially computes lower and upper
bounds between which the weight of individual tokens can vary, such
that a selection query with a well defined reduced threshold θ′ < θ will
return all true answers (i.e., will not result in any false negatives). The
additional cost is an increased number of false positives. The reduced
threshold θ′ is a function of θ, the particular weighing scheme, and
the relaxation bounds. The tighter the relaxation bounds chosen, the
smaller the number of false positives becomes.

6.8 Discussion and Related Issues

It is very difficult to determine whether any of the aforementioned
strategies performs better than the rest, across the board. The rela-
tive cost savings between sorting according to string identifiers, sorting
according to Lp-norms, or prioritizing lists, heavily depend on a vari-
ety of factors most important of which are: the algorithm used, the
weighing scheme used, the specific query (whether it contains tokens
with very long lists for which the Lp-norm filtering will yield significant
pruning), the overall token distribution of the data strings, the storage
medium used to store the lists (e.g., disk drive, main memory, solid
state drive), and the type of compression used for the lists, if any.
Choosing the right algorithm depends on specific application and data
characteristics.

It is important to state here that most list compression algorithms
are designed for compressing string identifiers, which are natural num-
bers. The idea being that natural numbers in sorted order can easily
be represented by delta coding. In delta coding only the first number is
stored, and each consecutive number is represented by its distance to
the previous number. This representation decreases the magnitude of
the numbers stored (since deltas are expected to have small magnitude
when the numbers are in sorted order) and enables very efficient com-
pression. A significant problem with all normalized similarity functions
is that, given arbitrary token weights, token lists have to store real
valued L1-norms (or L2-norms for Cosine similarity). Lists containing
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real valued attributes cannot be compressed as efficiently as lists con-
taining only natural numbers. Of course one could still use well-known
compression techniques (e.g., Golomb coding and run length encoding).

Another list compression approach is to completely discard certain
inverted lists based on the size of lists, their contribution to overall
string similarity given the weight of the tokens they correspond to, the
effect of discarded lists on list merging efficiency given a query work-
load, etc. Another intuitive idea is to combine token lists that are very
similar to each other, using a single inverted list to store the union of
the initial lists. Finally, one can use variable length grams (as opposed
to fixed length q-grams) to better capture the distribution of short sub-
strings within the data strings, which can potentially yield significant
space and performance improvements, by eliminating very frequent,
short grams and replacing them with longer, less frequent grams.

6.9 Related Work

Baeza-Yates and Ribeiro-Neto [8] and Witten et al. [71] discuss selec-
tion queries for various similarity measures using multiway merge

and inverted indexes. The authors also discuss various compression
algorithms for inverted lists sorted according to string identifiers. Behm
et al. [11] discuss specialized lossy compression algorithms, while Li
et al. [49] and Yang et al. [76] present compression algorithms based on
alternative string tokenizations that take advantage of variable length
grams. Li et al. [48] introduced the optimized version of the multiway

merge algorithm for the special case of unit token weights. Linder-
man [50] proposed the optimized version and early termination condi-
tion of the multiway merge algorithm for general weights. Knuth [43]
gives a more general discussion of the multiway merge algorithm in
the context of external sorting. Linderman [50] also proposed the opti-
mized version of the multiway merge algorithm based on sorting both
by norm and string identifiers.

Koudas et al. [44] introduced an SQL based framework for identi-
fying similar strings based on Cosine similarity and Lp-norms. Various
strategies for evaluating set intersection queries based on sorting sets
according to their Lp-norms have been made by Bayardo et al. [10].
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Hadjieleftheriou et al. [33] introduced further optimizations for the spe-
cial case of Cosine similarity. Lp-norm based filtering has also been used
by Li et al. [48] and Xiao et al. [75].

A detailed analysis of threshold based algorithms is conducted by
Fagin et al. [29]. Improved termination conditions for these algorithms
are discussed by Sarawagi and Kirpal [60], Bayardo et al. [10] and Had-
jieleftheriou et al. [33]. The heaviest first algorithm for weighted
intersection based on prefix and suffix lists is based on ideas introduced
by Sarawagi and Kirpal [60] and Chaudhuri et al. [19]. The same algo-
rithm, assuming unit token weights, was extended for arbitrary prefix
lengths by Li et al. [48]. The heaviest first algorithm for arbitrary
token weights was introduced by Hadjieleftheriou et al. [33].

The partitioning strategy for all-match join queries with memory
constraints was proposed by Sarawagi and Kirpal [60]. The incremen-
tal indexing for self-join queries was first proposed by Sarawagi and
Kirpal [60]. The improved algorithm for Jaccard, Dice, and Cosine
similarity based on deleting elements from the top of token lists was
proposed by Bayardo et al. [10]. The block nested loop self-join algo-
rithm in case of memory constraints was also proposed by Bayardo
et al. [10]. Various techniques for answering top-k queries using inverted
indexes and the multiway merge strategy were discussed by Vernica
and Li [69].

Efficient online updates for inverted indexes have been studied
extensively by Lester et al. [46]. Propagating updates for inverted
indexes stored in a relational database were addressed by Koudas
et al. [45]. Index construction and update related issues with regard
to Lp-norm computation is discussed in detail by Hadjieleftheriou
et al. [34].



7
Algorithms for Set Based Similarity Using

Filtering Techniques

So far we have discussed several algorithms based on building inverted
indexes on all the tokens contained in the data strings. A fundamen-
tally different indexing approach is based on the observation that for
a variety of similarity measures one can easily derive upper bounds on
the similarity by examining only a small number of tokens from each
string. We call algorithms for computing upper bounds on the simi-
larity filtering techniques. Given a query string, once a candidate set
of answers has been produced using a filtering technique, a refinement
step is performed to compute the exact similarity and return the correct
answers. This filter and refine approach, as it is commonly called, builds
an inverted index of substantially reduced size over a small subset of
tokens per string. The advantage of filtering techniques is that they can
evaluate join queries very efficiently. The drawback is that the filtering
phase might produce a large number of false positives that will have to
be pruned by verification during the refinement step. Verification might
be expensive, depending on the similarity function used. Here, we focus
only on filtering techniques that do not result in any false negatives.
We do not cover synopses data structures and probabilistic algorithms,
like min-wise independent permutations and locality sensitive hashing
that can discard valid answers.

339
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7.1 The Prefix Filter

Let ≺ be a total ordering of the token universe Λ, such that for
λ1,λ2 ∈ Λ,λ1 ≺ λ2⇔W (λ1) ≥W (λ2) (i.e., tokens are sorted in non-
increasing order of their weights). Consider Weighted Intersection sim-
ilarity first and assume that we are treating strings as sets (disregarding
token frequency and position) for simplicity of presentation. The prefix
signature of a string is defined as

Definition 7.1 (Weighted Intersection Prefix). Let s = {λs
1, . . .,

λs
m} represented as a set of tokens, where without loss of generality

tokens are sorted in increasing ≺ order (i.e., λs
1 ≺ ·· · ≺ λs

m). Let θ be a
pre-determined minimum possible query threshold for Weighted Inter-
section similarity. Let λs

π be the token in s s.t.

π = arg max
1≤π≤m

m∑
i=π

W (λs
i ) ≥ θ.

The prefix PI
θ (s) of string s is defined as PI

θ (s) = {λs
1, . . . ,λ

s
π}, and the

suffix SI
θ (s) is defined as SI

θ (s) = {λs
π+1, . . . ,λ

s
m}.

For example, the prefix and suffix of string s = {λs
1, . . . ,λ

s
m} are

shown in Figure 7.1.
It holds that

Lemma 7.1. Given two string prefixes PI
θ (s),PI

θ (r)

I(s,r) ≥ θ⇒PI
θ (s) ∩ PI

θ (r) �= ∅.

Proof. The intuition behind the proof is shown in Figure 7.2. The proof
is by contradiction. Let I(s,r) ≥ θ and PI

θ (s) ∩ PI
θ (r) = ∅. Notice that

Fig. 7.1 The prefix and suffix of string s = {λs
1, . . . ,λs

m}. Without loss of generality, it is
assumed that W (λs

1) ≥ . . . ≥ W (λs
m).
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Fig. 7.2 If two prefixes have empty intersection then, at best, even if a suffix matches
completely, by construction the total intersection weight cannot be larger than θ.

since tokens are sorted in decreasing order of weights one of the follow-
ing holds:

(1) If PI
θ (s) ∩ SI

θ (r) �= ∅, then PI
θ (r) ∩ SI

θ (s) = ∅. By defini-
tion, ‖SI

θ (r)‖1 =
∑

λr
i ∈SI

θ (r) W (λr
i ) < θ. Hence,

I(s,r) = ‖PI
θ (r) ∩ PI

θ (s)‖1 + ‖PI
θ (r) ∩ SI

θ (s)‖1
+‖SI

θ (r) ∩ PI
θ (s)‖1 + ‖SI

θ (r) ∩ SI
θ (s)‖1

= ‖SI
θ (r) ∩ PI

θ (s)‖1 + ‖SI
θ (r) ∩ SI

θ (s)‖1
≤ ‖SI

θ (r)‖1 < θ.

(2) If PI
θ (r) ∩ SI

θ (s) �= ∅, then PI
θ (s) ∩ SI

θ (r) = ∅. Hence,
similarly

I(s,r) ≤ ‖SI
θ (s)‖1 < θ.

Both cases lead to a contradiction.

The prefix filter reduces the problem of computing the intersection
between the token sets of two strings to that of computing whether the
prefixes of those strings have a non-empty intersection.

Notice that the prefix signature was defined in terms of strings rep-
resented as sets of tokens. The definition for sequences and frequency-
sets is similar. For sequences, each token/position pair is considered as
one element of the prefix. For frequency-sets, each token/frequency
pair is considered as many times as the frequency of the token in
the prefix (i.e., the prefix becomes a bag of tokens with a compressed
token/frequency pair representation). It is important to consider each
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token multiple times in order to compute the minimum prefix (even
though when computing the intersection of two prefixes multiplicity
is not important), since considering each token only once, irrespective
of its frequency, would allow extra tokens in the prefix which might
increase the number of false positives at query time.

Extending the prefix filter algorithm for Normalized Weighted
Intersection, Jaccard, Dice, and Cosine similarity is straightforward.
Consider Jaccard similarity first. The prefix signature of a string is
defined as

Definition 7.2 (Jaccard Prefix). The prefix PJ
θ (s) for Jaccard

similarity is defined with respect to:

π = arg max
1≤π≤l

l∑
i=π

W (λs
i ) ≥ θ‖s‖1.

The following is true:

Lemma 7.2. Given two string prefixes PJ
θ (s),PJ

θ (r)

J (s,r) ≥ θ⇒PJ
θ (s) ∩ PJ

θ (r) �= ∅.

Proof. The proof is based on the fact that Jaccard similarity can be
expressed as a weighted intersection constraint. Given two strings s,r

J (s,r) ≥ θ⇒
‖s ∩ r‖1

‖s‖1 + ‖r‖1 − ‖s ∩ r‖1 ≥ θ⇒

‖s ∩ r‖1 ≥ θ

1 + θ
(‖s‖1 + ‖r‖1).

From Lemma 6.11, J (s,r) ≥ θ⇒ ‖r‖1 ≥ θ‖s‖1. Hence,

J (s,r) ≥ θ⇒ ‖s ∩ r‖1 ≥ θ‖s‖1.
The proof follows directly from the proof of Lemma 7.1 where the
threshold for the weighted intersection similarity becomes θ‖s‖1 instead
of θ.
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Careful observation reveals that given two strings s,r the condition
PJ

θ (s) ∩ PJ
θ (r) �= ∅ for Jaccard similarity allows false positives that

could be pruned by computing a tighter bound on the weighted inter-
section between two strings from the complete information provided in
their prefixes, as opposed to using only their intersection.

Claim 7.3. Given two strings s,r

‖s ∩ r‖1 ≤ ‖PJ
θ (s) ∩ PJ

θ (r)‖1 + max(‖SJ
θ (s)‖1,‖SJ

θ (r)‖1). (7.1)

Proof. Let PJ
θ (r) ∩ SJ

θ (s) = ∅ (the case PJ
θ (s) ∩ SJ

θ (r) = ∅ is symmet-
ric). Then,

‖s ∩ r‖1 = ‖PJ
θ (r) ∩ PJ

θ (s)‖1 + ‖PJ
θ (r) ∩ SJ

θ (s)‖1
+‖SJ

θ (r) ∩ PJ
θ (s)‖1 + ‖SJ

θ (r) ∩ SJ
θ (s)‖1

< ‖PJ
θ (r) ∩ PJ

θ (s)‖1 + ‖SJ
θ (r)‖1.

Since either PJ
θ (r) ∩ SJ

θ (s) = ∅ or PJ
θ (s) ∩ SJ

θ (r) = ∅ has to be true
(given that tokens are sorted in decreasing order of weights) the claim
follows.

Hence

Lemma 7.4. Given two string prefixes PJ
θ (s),PJ

θ (r)

J (s,r) ≥ θ ⇒ ‖PJ
θ (s) ∩ PJ

θ (r)‖1 + max(‖SJ
θ (s)‖1,‖SJ

θ (r)‖1)
≥ θ

1 + θ
(‖s‖1 + ‖r‖1).

It is easy to see that similar conditions hold for Weighted Intersection,
Normalized Weighted Intersection, Dice, and Cosine similarity. One
drawback of using the tighter pruning conditions is that in order to
evaluate the condition we need to know both the norm of the prefix of
each data string and the norm of the suffix (or alternatively, the norm
of the suffix can be computed as the norm of the whole string minus
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the norm of the prefix). This implies that we would have to store two
norm values per entry, per inverted list, which increases the size of the
inverted index significantly.

The prefix signature of a string for the other similarity measures
follows.

Definition 7.3 (Prefix Signatures).

• Normalized Weighted Intersection: The prefix PN
θ (s) for

Normalized Weighted Intersection similarity is defined with
respect to:

π = arg max
1≤π≤l

l∑
i=π

W (λs
i ) ≥ θ‖s‖1.

• Dice: The prefix PD
θ (s) for Dice similarity is defined with

respect to:

π = arg max
1≤π≤l

l∑
i=π

W (λs
i ) ≥

θ

2 − θ
‖s‖1.

• Cosine: The prefix PC
θ (s) for Cosine similarity is defined with

respect to:

π = arg max
1≤π≤l

√√√√ l∑
i=π

W (λs
i )2 ≥ θ‖s‖2.

An important concern regarding prefix signatures is that the token
ordering function significantly affects the pruning power of the prefix fil-
ter. Since the prefix filter evaluates the intersection between two prefix
signatures, the rarer the tokens contained in the prefixes are, the lower
the probability of a false positive intersection becomes. Rare tokens by
definition appear in a small number of prefixes, while frequent tokens
will tend to appear in the majority of prefixes. For that reason the
prefix filter is often used in combination with frequency based token
weights (e.g., idf weights).
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In the special case where token weights are uniform (i.e., ∀λ ∈ Λ,
W (λ) = c for some constant c), notice that defining the order function
≺ to be a function of W is meaningless. Nevertheless, we can still effec-
tively utilize prefix signatures, since ‖s‖1 =

√‖s‖2 = c‖s‖0 (where ‖s‖0
is the cardinality of the sequence, frequency-set, set). The reasoning of
prefix filtering remains exactly the same as before by considering pre-
fix and suffix lengths as opposed to weights. Once again, in order to
improve the pruning effectiveness of the filter the order function ≺ is
defined to be the decreasing token idf weight order (irrespective of the
uniform weighing function W that is used to compute string similarity).

7.1.1 All-Match Selection Queries

To answer selection queries we can build an inverted index on the prefix
signatures. Given a dataset of strings S, we build an inverted index on
the signatures of all s ∈ S. The inverted index consists of one list per
token present in the union of prefix signatures. Given a query string
v = {λv

1, . . . ,λ
v
m} and query threshold θ′ ≥ θ, first we build the prefix

signature Pθ′(v). The query candidate answer set consists of strings
contained in the union of token lists L(λv

i ) s.t. λv
i ∈ Pθ′(v), that satisfy

Lemma 7.4. After the candidate set has been produced, a refinement
step computes the exact similarity between the query and all candi-
dates.

Note here that when strings are represented as sequences, if the sim-
ilarity of strings is intended to be interpreted as the similarity of their
sequences, a token/position pair is a match if and only if it agrees both
on the token and the position (recall that how we interpret the repre-
sentation of strings affects the semantics of similarity). On the other
hand, when representing strings as frequency-sets (which are essentially
bags of tokens), a token/frequency pair is a match based on the token
alone (the frequency is not important, since one occurrence of the token
is enough to yield a non-empty intersection of prefixes).

A drawback of the prefix inverted index is that a minimum query
threshold θ needs to be determined in advance. Smaller θ by con-
struction implies longer prefixes on average, adversely affecting the
size of the inverted index. Answering a query v with threshold θ′ ≥ θ
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is straightforward, since the inverted index for minimum threshold θ

indexes more information than that needed for answering queries with
threshold θ′ > θ. The index cannot be used to answer queries with
threshold θ′ < θ.

A more intuitive way of understanding the prefix inverted index is
to see it as a special case of a full inverted index, where each token list
is only partially populated by only those strings that contain that token
specifically in their prefix. Now, we can use the heaviest first algorithm
presented in Section 6 to answer queries, assuming that the algorithm
traverses all lists up to L(λv

π) only. Recall that heaviest first processes
token lists in decreasing order of token weights (implicitly using the
concept of prefix filtering). Straightforwardly, even if the algorithm
traversed all query lists, the maximum possible remaining potential of
unseen candidates after list L(λv

π) is processed (refer to Lemmata 6.4,
6.7, 6.10, 6.14) would be smaller than the query threshold, instruct-
ing the algorithm to stop adding new candidates in the candidate set.
Notice that for the prefix based inverted index, it is not beneficial to
actually scan lists beyond L(λv

π) since lists are only partially popu-
lated, hence not useful for computing tighter similarity upper bounds,
for already discovered candidates (the entries of the candidates might
not be present in those partially populated lists).

The fundamental difference between a prefix inverted index and a
full inverted index using the heaviest first strategy is that the latter
prunes strings incrementally using exactly the same concept as the
prefix filter, but for always increasing prefix lengths (every new list
processed essentially increases the length of the prefixes examined, by
one token), and at the same time computes the actual similarity of
candidate strings incrementally, ultimately eliminating the need for a
refinement step. In addition, the full index can answer queries with
arbitrary thresholds θ. These advantages come at the cost of increased
index size and potentially slower query evaluation since the fully popu-
lated lists might contain strings that share a token with the query but
not within the prefix, which would have otherwise not been considered.
On the other hand, the pruning power of the full inverted index is at
least as good or better than that of the prefix inverted index, since by
virtue of fully populated lists, the algorithm computes much tighter
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similarity upper bounds every time a new list is processed. The prefix
inverted index might have a performance advantage over the fully pop-
ulated inverted index if the former fits in main memory while the latter
does not, but this is data and query dependent and hard to quantify
since the refinement step of the prefix filter would still have to access
strings from secondary storage using random accesses.

Based on these observations, one could advocate for a hybrid
approach that creates both a full and a prefix inverted index. Then,
given a query, we scan the prefix index to find candidates using the
tokens in the prefix of the query and also scan the full inverted index
using the suffix of the query to compute tighter upper bounds. Notice
that this approach cannot compute the actual similarity scores with-
out also accessing the full lists of the tokens in the query prefix; some
candidates identified in the first phase using the prefix lists might have
a token in common with the query prefix that nevertheless appears in
the suffix of the data string, and hence is not contained in the prefix
inverted index.

7.1.2 Top-k Selection Queries

Prefix signatures cannot be used for answering top-k selection queries
due to the fact that a minimum pre-determined threshold θ needs to
be decided in advance in order to build the prefix inverted index. Since
the k-th similarity between any data string and a given query in the
worst case could be 0, for θ = 0 the signature index will degenerate to
a full inverted index.

7.1.3 All-Match Join Queries

Filtering techniques excel at processing join queries. Assume that we
are performing a join between two string datasets and neither dataset
is already indexed. If the full inverted index of either dataset cannot
fit in main memory, answering the query requires partitioning the data
appropriately. Instead, we can build an inverted index of significantly
reduced size by using prefix signatures. More importantly, since we
build the prefix inverted indexes on the fly, we can build signatures
using θ exactly equal to the query threshold, which has the immediate
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consequence that we are building the minimal inverted index needed for
identifying all answers with respect to any string in the second dataset.
The actual algorithms are the same as those discussed in Section 6.3
and hence a detailed discussion here is omitted.

When using the sorted block nested loop join algorithm with prefix
filters, there is an additional optimization that we can apply, which
reduces the size of the prefixes indexed by taking advantage of the fact
that the input datasets are sorted in increasing Lp-norm order.

Definition 7.4(Jaccard Reduced Prefix). Let s = {λs
1, . . . ,λ

s
m} be

a string with its tokens sorted in increasing ≺ order. Let θ be a Jaccard
similarity threshold. The reduced prefix of s is defined as PJ

2θ
θ+1

(s).

For simplicity let φ = 2θ
θ+1 . The following is true:

Lemma 7.5. Given two strings s,r s.t. ‖s‖1 ≤ ‖r‖1, the reduced prefix
PJ

φ (s) of s and the prefix PJ
θ (r) of r, it holds that

J (s,r) ≥ θ⇒PJ
φ (s) ∩ PJ

θ (r) �= ∅.

Proof. Let PJ
φ (s) ∩ PJ

θ (r) = ∅. It holds that

‖s ∩ r‖1 = ‖PJ
φ (s) ∩ PJ

θ (r)‖1 + ‖PJ
φ (s) ∩ SJ

θ (r)‖1
+‖SJ

φ (s) ∩ PJ
θ (r)‖1 + ‖SJ

φ (s) ∩ SJ
θ (r)‖1

≤ max(‖SJ
φ (s)‖1,‖SJ

θ (r)‖1).
By definition

J (s,r) =
‖s ∩ r‖1

‖s‖1 + ‖r‖1 − ‖s ∩ r‖1 ≤
‖s ∩ r‖1

2‖s‖1 − ‖s ∩ r‖1 .

Consider the two cases:

(1) Let ‖s ∩ r‖1 ≤ ‖SJ
φ (s)‖1 < 2θ

θ+1‖s‖1. Then,

J (s,r) <
2θ

θ+1‖s‖1
2‖s‖1 − 2θ

θ+1‖s‖1
= θ.
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(2) Let ‖s ∩ r‖1 ≤ ‖SJ
θ (r)‖1. We prove by contradiction.

Assume that

J (s,r) ≥ θ⇒ ‖s ∩ r‖1 ≥ θ

θ + 1
(‖s‖1 + ‖r‖1).

By definition

‖s ∩ r‖1 ≤ ‖SJ
θ (r)‖1⇒ ‖s ∩ r‖1 < θ‖r‖1.

Thus
θ

θ + 1
(‖s‖1 + ‖r‖1) < θ‖r‖1⇒ ‖s‖1 < θ‖r‖1.

But, from Lemma 6.11

J (s,r) ≥ θ⇒ ‖s‖1 ≥ θ‖r‖1,
which is a contradiction. Hence J (s,r) < θ.

Lemma 7.5 states that if we know that strings are processed in
increasing order of L1-norms, then for every string indexed, we only
need to index a reduced prefix of the string. Once a new string r is
processed, it is guaranteed to have L1-norm larger than or equal to
all strings s already indexed, hence we can probe the index using the
prefix PJ

θ (r) of r to find all candidate pairs using the reduced prefix
principle.

It is easy to see that the index reduction principle does not apply to
Weighted Intersection and Normalized Weighted Intersection similarity.
In addition, it can be shown that it does not help reduce the prefixes
for Dice similarity. On the other hand it can help reduce the prefixes
for Cosine similarity.

Definition 7.5 (Cosine Reduced Prefix). The reduced prefix of
string s is defined as PC√

θ
(s).

The following is true:

Lemma 7.6. Given two strings s,r s.t. ‖s‖2 ≤ ‖r‖2, the reduced prefix
PC√

θ
(s) of s and the prefix PC

θ (r) of r, it holds that

C(s,r) ≥ θ⇒PC√
θ
(s) ∩ PC

θ (r) �= ∅.
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7.1.4 All-Match Self-join Queries

As with join queries, the algorithms for self-join queries are similar to
the ones discussed in Section 6.4, where the full inverted index con-
structed during the incremental indexing phase is simply replaced by
a prefix signature inverted index. Similarly, the prefix reduction prin-
ciple discussed in Section 7.1.3 can be employed for self-join queries by
sorting the input dataset in Lp-norm order and incrementally indexing
only the reduced prefixes of strings (see Algorithm 6.4.1).

7.1.5 Top-k Join and Self-join Queries

Once again top-k join and self-join queries can be answered by using
the all-match join and self-join algorithms with prefix inverted indexes
instead of full inverted indexes. The algorithms simply identify any k

candidates during initialization, and use the k-th smallest similarity as
the initial threshold θ. Notice that in the worst case the initial k-th
similarity can be 0, and the prefix inverted index will degenerate to a
full inverted index (each prefix is the complete string). In fact, there is
no better solution known when the input datasets do not fit in main
memory.

Nevertheless, there exists another effective strategy when there is
enough available memory to fit one dataset and its prefix inverted
index in main memory. The strategy uses an optimistic approach that
assumes that the k-th smallest similarity is the maximum possible sim-
ilarity (e.g., one for Normalized Weighted Intersection, Jaccard, Dice,
and Cosine similarity), and starts indexing prefixes incrementally, one
token at a time. This strategy is effective only in main memory, since
the algorithm has to repeatedly access each string when it is time to
index its next prefix token. The top-k self-join algorithm for Jaccard
similarity is shown as Algorithm 7.1.1. The same algorithm, with slight
modifications, can be used to answer top-k join queries between two sets
S,R as well (e.g., a simple way to do this is to run a slightly modified
self-join algorithm on the union S ∪ R). It can work for Weighted Inter-
section, Normalized Weighted Intersection, Dice and Cosine similarity.

In the beginning the algorithm indexes only the first token of each
string. When a new token sπ from a given string s is indexed, the
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Algorithm 7.1.1: Top-k Join(S,k)

R is a min-heap initialized with the first k pairs in S

E is a max-heap initialized with one entry 〈s̈,1,1.0〉 per s ∈ S

L(λs
i ) are empty token lists

Let Jk denote the similarity of the top element in R

while E is not empty


〈s̈,π,J π
s 〉 ← E.pop

if J π
s ≤ Jk

then Break
for all (r̈,‖r‖1) ∈ L(λs

π)

do




if Jk‖r‖1 ≤ ‖s‖1 ≤ ‖r‖1/Jk

then
{

R.insert(J (s,r),(s,r))
R.pop

J π+1
s =

‖s‖1−‖λs
1···λs

π−1‖1

‖s‖1

if J π+1
s > Jk

then
{

L(λs
π)← (s̈,‖s‖1)

E.push(〈s̈,π + 1,J π+1
s )

algorithm probes the existing index (as it is being built incrementally)
to identify candidate pairs s,r, immediately computes the exact simi-
larity J (s,r) for all r, and updates the top-k result heap as necessary.
Then, the algorithm inserts s in token list L(λs

π) if necessary, and also
computes a hypothetical maximum similarity threshold between s and
any unseen string that does not match with s on the already indexed
tokens. The algorithm continues iteratively until there is no string s

whose hypothetical maximum similarity threshold is larger than the
k-th similarity in the result set.

In more detail, first the algorithm initializes a min-heap with k arbi-
trary pairs (e.g., the first k pairs in S) sorted according to their sim-
ilarity and creates an event max-heap containing one entry per string
in S. Each event 〈s̈,π,J π

s 〉 is a triple consisting of a string identifier s̈,
a prefix length π, and a similarity upper bound J π

s . The event heap is
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initialized with one event 〈s̈,1,1.0〉 per string s ∈ S, and maintained in
decreasing order of J π

s .
The similarity upper bound for a given string s is computed by

considering the best case scenario. Abusing notation, let Pπ(s) (Sπ(s))
denote the prefix (suffix) of string s containing exactly the first π

tokens (all remaining tokens). By construction, the tokens in the cur-
rent indexed prefix Pπ′

(r) of any string r that is not already contained
in the answer set, do not match any of the tokens in the already indexed
prefix Pπ(s) of s. Then, the best-case similarity upper bound between
s and r is when all of the tokens in the current (unseen) suffix Sπ′

(r) of
r match those in the unknown suffix Sπ(s) of s. The potential Jaccard
similarity becomes

J (s,r) ≤ ‖Sπ(s)‖1
‖Pπ(s)‖1 + ‖Pπ′(r)‖1 + ‖Sπ(s)‖1 ≤

‖Sπ(s)‖1
‖s‖1 .

Here, we need to compute the upper bound similarity of s with respect
to an arbitrary string r, thus based only on information in s; drop-
ping the term ‖Pπ′

(r)‖1 from the denominator and maximizing the
numerator yields the desired upper bound. Hence

J π
s =

‖Sπ(s)‖1
‖s‖1 =

‖s‖1 − ‖Pπ(s)‖1
‖s‖1 .

An interesting observation here is that if we assume unit token weights
we can improve the similarity upper bound based on the fact that
during each iteration of the algorithm the indexed prefixes consist of
exactly the same number of tokens for all strings. In that case we know
that π′ = π (i.e., ‖Pπ′

(r)‖1 = ‖Pπ(s)‖1), hence the similarity upper
bound becomes

J π
s =

‖Sπ(s)‖1
‖s‖1 + ‖Pπ(s)‖1 .

The algorithm proceeds by extracting the top event from the event
heap, say 〈s̈,π,J π

s 〉, and then scans inverted list L(λs
π) to identify new

candidates. The exact similarity of each candidate is computed and
the top-k result heap is updated appropriately. Then, the algorithm
needs to index the new token λs

π and compute the similarity upper
bound J π+1

s of s with any unseen string that does not agree with s



7.1 The Prefix Filter 353

in any of the already indexed tokens λs
1, . . . ,λ

s
π. Then, it has to insert

a new event 〈s̈,π + 1,J π+1
s 〉 in the event heap, if and only if J π+1

s is
larger than the k-th similarity in the result heap. The algorithm stops
once there are no more events to process or the k-th similarity in the
result heap is larger than the similarity upper bound at the top of the
event heap.

We can further improve the pruning efficiency of this algorithm
by using the fact that the token lists are created incrementally in
decreasing order of similarity upper bounds. Let string s with cur-
rent indexed prefix Pπ(s) and last prefix token λs

π. Let string r with
current indexed prefix Pπ′

(r) whose first common token with s is token
λs

π (hence λs
π ∈ Sπ′

(r)). By definition, the intersection of the current
prefixes is empty Pπ(s) ∩ Pπ′

(r) = ∅. Since λs
π is the first token in com-

mon between s and r, and tokens are processed in sorted weight order,
it holds that

‖s ∩ r‖1 = ‖Sπ(s) ∩ Sπ′
(r)‖1 ≤min(‖Sπ(s)‖1,‖Sπ′

(r)‖1).

There are two cases to consider

‖s ∩ r‖1 ≤
{
‖Sπ(s)‖1 = ‖s‖1J π

s , if ‖s‖1J π
s ≤ ‖r‖1J π′

r (1)

‖Sπ′
(r)‖1 = ‖r‖1J π′

r , if ‖r‖1J π′
r ≤ ‖s‖1J π

s . (2)

For case (1)

‖s ∪ r‖1 ≥ ‖s‖1 + ‖r‖1 − ‖s‖1J π
s

≥ ‖s‖1 + ‖s‖1 J
π
s

J π′
r

− ‖s‖1J π
s ⇒

J (s,r) =
‖s ∩ r‖1
‖s ∪ r‖1

≤ ‖s‖1J π
s

‖s‖1 + ‖s‖1 J π
s

J π′
r
− ‖s‖1J π

s

≤ J π
s J π′

r

J π
s + J π′

r − J π
s J π′

r

.
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And for case (2)

‖s ∪ r‖1 ≥ ‖s‖1 + ‖r‖1 − ‖r‖1J π′
r

≥ ‖r‖1J
π′
r

J π
s

+ ‖r‖1 − ‖r‖1J π′
r ⇒

J (s,r) =
‖s ∩ r‖1
‖s ∪ r‖1

≤ ‖r‖1J π′
r

‖r‖1 J π′
r

J π
s

+ ‖r‖1 − ‖r‖1J π′
r

≤ J π
s J π′

r

J π
s + J π′

r − J π
s J π′

r

.

We denote the new similarity upper bound with

J ′ =
J π

s J π′
r

J π
s + J π′

r − J π
s J π′

r

.

The following holds

Lemma 7.7. The function f(x,y) = xy
x+y−xy is monotonically increas-

ing in x and y.

Proof. f(x,y) is monotonically increasing in x and y if and only if the
function g(x,y) = 1

f(x,y) is monotonically decreasing in x and y. But

g(x,y) =
1
x

+
1
y
− 1,

which is clearly monotonically decreasing in x and y.

Hence the new upper bound similarity threshold J ′ is monotonically
increasing in J π

s and J π′
r . Since by construction strings are processed

in decreasing order of J π
s , they are also processed in decreasing order

of J ′. Given a new string r, ready to be inserted in list L(λs
π), as we

are scanning L(λs
π) to identify new candidate pairs with respect to r,

we can stop scanning once we encounter the first string s s.t. J ′ < Jk.
No subsequent string can have a larger similarity upper bound, since,
by construction, they have been inserted in L(λs

π) in decreasing order
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of J π
s . Furthermore, since all remaining strings r in the event queue are

also processed in decreasing order of J π′
r , no string r will ever need to

access any string s ∈ L(λs
π) after the point where the scan has stopped,

hence we can delete from L(λs
π) all remaining strings to save space.

A drawback of this algorithm is that it might have to compute
the exact similarity between the same pair of strings as many times
as the number of common tokens between those strings. An obvious
optimization is to insert the similarity of each pair into a hash table
the first time it is computed. But this would result in a potentially large
hash table. Instead, a simple improvement is to first compute whether
a pair will be identified a second time, the first time its similarity is
computed, and insert it in the hash table only if necessary. This is
possible, since it is easy to compute an upper bound on the similarity
of the pair and hence a worst case prefix length that will have to be
examined. We simply compute whether the two strings have more than
one token in common within this worst case prefix.

7.2 Partitioning and Enumeration Signatures

Prefix filtering is based on defining a total order of tokens in Λ. A funda-
mentally different approach is based on permuting the tokens instead.
After tokens have been randomly permuted, we either partition tokens
and hash each partition to create a signature based on the pigeonhole
principle, or enumerate all possible combinations of a certain number
of tokens, based on the prefix principle, and hash the resulting combi-
nations to create a signature.

7.2.1 The Pigeonhole Signature

Consider a random permutation of tokens in Λ. Such a permutation in
practice can be imposed by using a hash function h:Λ→ N (practical
hash functions cannot produce a truly uniform permutation of tokens,
but in reality the permutation imposed by these hash functions is good
enough for applications).

Partitioning signatures are based on the pigeonhole principle. For
simplicity, consider strings as sets, and let a string s be conceptually
represented as a vector of dimensionality Λ, with magnitude W (λs

i )
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for each coordinate corresponding to a token λs
i ∈ s and 0 elsewhere

(i.e., the vector space model). The basic partitioning signatures work
only for unit token weights, in which case the string vectors contain 1
in each coordinate corresponding to all tokens λs

i ∈ s and 0 elsewhere.
Extensions for uniform (other than unit) and non-uniform weights will
be discussed shortly.

Let the tokens in Λ be ordered using the permutation function h.
In other words the token corresponding to the i-th vector coordinate
is determined by h. The Hamming distance between two vectors is the
number of dimensions (i.e., tokens) in which the two vectors differ,
that is

Definition 7.6 (Hamming Distance). Given two |Λ|-dimensional
Boolean vectors s = {bs

1, . . . , b
s
|Λ|}, r = {br

1, . . . , b
r
|Λ|}, the Hamming dis-

tance is defined as

H(s,r) =
|Λ|∑
i=1

I(bs
i = br

i ),

where I(bs
i = br

i ) is an indicator variable that returns 1 if bs
i = br

i and 0
otherwise.

The definition can be straightforwardly extended for sequences and
frequency-sets.

Assume that we partition the vectors into θ + 1 groups of consecu-
tive dimensions from the permuted token universe h(Λ). If two vectors
are within Hamming distance θ then by the pigeonhole principle the two
vectors must completely agree in at least one partition. Given a string
s we can create a simple string signature based on the pigeonhole prin-
ciple by hashing the bit-vectors corresponding to each one of the θ + 1
partitions using a hash function h′:{0,1}∗⇒ [0,2b) (b dependent on the
desired accuracy), and maintaining the resulting θ + 1 hash values. We
denote this signature with PG1. An example is shown in Figure 7.3.

Two strings are within Hamming distance θ if and only if their
hash signatures agree in at least one hash value corresponding to the
same partition. For convenience, we can concatenate the partition num-
ber along with the bit-vector corresponding to that partition and hash
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Fig. 7.3 If two vectors differ in all four hash values σi, then they differ in at least one bit
within each partition, hence their Hamming distance is larger than θ = 3.

the concatenated string, such that the partition number information is
encoded in the hash value. In that case, two strings are within Ham-
ming distance θ if and only if they have at least one hash value in
common.

Lemma 7.8. Given strings s,r and their corresponding pigeonhole
signatures PG1(s),PG1(r)

H(s,r) ≤ θ⇒ PG1(s) ∩ PG1(r) �= ∅.

Expressing buckets as bit sequences in order to compute the hash value
of each bucket is not practical, since it implies the need to actually
instantiate the sparse vectors corresponding to data strings (depend-
ing on the dimensionality of the vectors and the hash function used,
buckets can have extremely large bit sequence representations). A more
practical alternative is to hash a compact sparse representation of each
bucket. This can be accomplished easily by concatenating and hashing
only the indices of those coordinates that are set to 1.

The filtering effectiveness of signature PG1 is affected by two fac-
tors. First, it is not unlikely for two strings to agree in a given partition
by pure chance resulting in a false positive. Second, in practice the vec-
tor dimensionality |Λ| is very large with respect to the average string
length. This implies that the resulting vectors are very sparse. Hence,
in expectation, a large number of strings will contain empty partitions
(i.e., partitions with bit-vectors consisting only of zeros). Pairs of strings
that share empty partitions need to be reported as candidates, which
might lead to an increased number of false positives. It is tempting to
consider pruning all pairs of strings that agree only on empty parti-
tions. Nevertheless, this would lead to false dismissals, as can be easily
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proven by a counter-example (a match on an empty partition implies
that the two strings do not differ on that set of coordinates which is
essential information with respect to their Hamming distance).

To boost the accuracy of signature PG1 we can create multiple
copies of the signature using an independent family of permutations H.
Then, if two vectors are within Hamming distance θ they have to agree
in at least one partition in all permutations H. In other words, we boost
the accuracy of the signature by repeating the random permutation
test multiple times. Of course the tradeoff is that we have to maintain
multiple independent signatures per strings.

We can also boost the accuracy of the partitioning signature by
using more than θ + 1 buckets. Consider a signature scheme that par-
titions the vector coordinates into θ + x,x > 1 partitions. Then, by the
pigeonhole principle once again if two vectors are within Hamming dis-
tance θ they have to agree in at least x partitions. Denote this new
partitioning based signature with PGx.

Lemma 7.9. For simplicity, let the probability that two signatures
match at a given coordinate be uniform across all coordinates and equal
to p. The probability of a positive answer for signature PGx, x ≥ 1 can
be expressed as:

θ+x∑
i=x

(
θ + x

i

)
p

|Λ|
θ+x

i(1 − p
|Λ|
θ+x )θ+x−i.

A simple analysis shows that for sufficiently large values of |Λ|,x the
expected filtering effectiveness of PGx is better than that of PG1. This
result is not surprising, considering that signature PGx requires more
space than signature PG1 for increasing x (recall that we maintain
one hash value per partition). For example, when θ + x = |Λ|, PGx

reduces to maintaining the actual vectors, which leads to no false posi-
tive answers. Alternatively, we can also boost the accuracy of signature
PGx by using multiple permutations for an independent family of per-
mutations H, at the cost of an increased signature size.

So far we have talked about various signatures based on random per-
mutations and hashing for computing a lower bound on the Hamming
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distance between vectors. The Hamming distance can be used to derive
upper bounds on the Intersection, Jaccard, Dice, and Cosine similarity
for any uniform weighing function W .

Lemma 7.10. Assuming a uniform weight function W (λ) = c,λ ∈ Λ,
given two strings s,r

I(s,r) ≥ θ⇒H(s,r) ≤ |s| + |r| − 2
θ

c
.

Proof.

I(s,r) ≥ θ⇒ c|s ∩ r| ≥ θ,

and

H(s,r) = |s| − |s ∩ r| + |r| − |s ∩ r| = |s| + |r| − 2|s ∩ r| ⇒

|s ∩ r| = |s| + |r| − H(s,r)
2

.

Hence,

|s| + |r| − H(s,r) ≥ 2
θ

c
⇒H(s,r) ≤ |s| + |r| − 2

θ

c
.

Similarly

Lemma 7.11. Assuming a uniform weight function W (λ) = c, λ ∈ Λ,
given two strings s,r

• Normalized Weighted Intersection:

N (s,r) ≥ θ⇒H(s,r) ≤ |s| + |r| − 2θmax(|s|, |r|).
• Jaccard:

J (s,r) ≥ θ⇒H(s,r) ≤ 1 − θ

1 + θ
(|s| + |r|).

• Dice:

D(s,r) ≥ θ⇒H(s,r) ≤ (1 − θ)(|s| + |r|).
• Cosine:

C(s,r) ≥ θ⇒H(s,r) ≤ |s| + |r| − 2θ
√
|s||r|.
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7.2.2 The Partenum Signature

Partenum is another popular string signature that has been proposed in
the literature. The partenum signature uses a fine-grained partitioning
and enumeration strategy, more complex than that of signature PGx.
The partenum signature is constructed by first partitioning the vectors
into θ+1

2 partitions of consecutive dimensions from the permuted uni-
verse h(Λ). A simple counting argument proves that given two vectors
with Hamming distance smaller or equal to θ, then at least one of the
θ+1
2 partitions has Hamming distance smaller or equal to one. Hence,

we can construct one signature per partition with a new, smaller Ham-
ming threshold θ′ = 1, and use the union of all partition signatures
as the signature of the string. For each partition we use PGy as the
signature of the partition, by constructing 1 + y sub-partitions. The
partenum signature consists of the union of the θ+1

2 PGy signatures.
An example is shown in Figure 7.4. Given a pair of vectors, if all parti-
tions are within Hamming distance greater than one, then the pair of
vectors cannot be within Hamming distance smaller equal to θ. Hence,
a pair of vectors is reported as a candidate if and only if at least one
of the PGy signatures corresponding to the same partition matches
(meaning that at least one of the θ+1

2 partitions has Hamming distance
smaller or equal to one).

The probability of a positive answer for partenum can be expressed
similarly to that of Lemma 7.9.

Fig. 7.4 First, the vector is split into θ+1
2 = 2 partitions. A pair of vectors is within Ham-

ming distance three iff the vectors have Hamming distance smaller equal to one in at least
one of the two partitions. Then, for each partition we create a PG1 signature. We can use
the PG1 signatures to efficiently verify whether each partition between a pair of vectors is
within Hamming distance one. If at least one such partition exists, it is possible that the
pair of vectors is within Hamming distance three, and we report the pair as a candidate.



7.2 Partitioning and Enumeration Signatures 361

7.2.3 The Prefix Enumeration Signature

Extending the pigeonhole and partenum signatures for arbitrary
weights is non-trivial. A naive approach would be to represent each
token λs

i of string s using W (λs
i ) copies (appropriate rounding tech-

niques can be used for real valued weights), and essentially converting
a weighted set of tokens into an unweighted bag and adversely increas-
ing the vector dimensionality. The pigeonhole signature cannot be used
for arbitrary weights in practice.

A different approach is to use ideas both from the pigeonhole and
prefix signatures to produce a weighted signature for the string. Assum-
ing Weighted Intersection similarity and query threshold θ, the idea is
to enumerate all minimal subsets of tokens of string s whose total
weight adds up to θ, and then hash each one of these subsets into an
integer using a hash function h (a minimal subset is a set that has no
proper subset with total weight larger than θ). The signature of the
string is the set of resulting hash values. Clearly, if I(s,r) ≥ θ then s

and r have to have at least one of the enumerated subsets of tokens in
common, resulting in a non-empty signature intersection.

The obvious drawback of this signature scheme is that for very
long strings the number of minimal token subsets exceeding the query
threshold will tend to be very large (especially for small thresholds),
resulting in a very large signature. To decrease the size of the signature
we can order every subset of tokens in decreasing weight order and hash
only a prefix of each subset (e.g., we hash all minimal prefixes with total
weight ≥ θ′, where θ′ controls the size of the signature). It is expected
that a large number of minimal subsets will share the same minimal
prefix resulting in exactly the same hash value, and hence reducing the
size of the signature. The drawback of course is that the new signature
results in false positives. Also, the resulting signatures do not have a
fixed size; the size heavily depends on the contents of a string. We call
this signature the prefix enumeration signature.

7.2.4 All-Match Selection Queries

For evaluating Hamming distance, we can use an inverted index to
answer queries using either the pigeonhole or the prefix enumeration



362 Algorithms for Set Based Similarity Using Filtering Techniques

signatures. Recall that given two strings s,r and corresponding pigeon-
hole signatures PGx(s),PGx(r), H(s,r) ≤ θ implies that |PGx(s) ∩
PGx(r)| ≥ x. Answering this query using an inverted index is reminis-
cent of using the multiway merge, threshold and heaviest first

algorithms to answer intersection queries on strings (with unit token
weights). Indeed, we can use essentially the same algorithms to evaluate
the intersection between pigeonhole signatures using the inverted index.
The same ideas apply for answering queries using the prefix enumera-
tion signature. The resulting inverted index contains one list per hash
value, for all hash values contained in the signatures of the data strings.

Nevertheless, we cannot straightforwardly use any of these signa-
tures to answer all-match selection queries for any of the other similarity
measures, given that the derived upper bounds given in Lemma 7.11,
depend on the lengths of both the data and the query string. Since
for arbitrary queries the lengths of the query strings are not known
in advance, constructing a meaningful signature for each data string a
priori is not trivial. In order to build such signatures, we use the length
filters (i.e., Lp-norm filters for non-uniform weights) derived for each
similarity function.

Simply stated, given a particular similarity function (other than
Hamming), a similarity threshold θ, and the associated Lp-norm fil-
ter, we know that for a given data string, the only query strings that
can have similarity larger than θ have to fall within the norm interval
specified by the norm filter. Hence, when constructing the signature
of the data string, we can simply derive an upper bound on the tar-
get Hamming distance that will guarantee no false dismissals by using
the minimum and maximum filtering lengths. Clearly, since Weighted
Intersection is not based on string norms, we cannot use these signa-
tures to evaluate Weighted Intersection similarity.

In particular, the following upper bounds are easily derived.

Lemma 7.12. Assuming a uniform weight function W (λ) = c,λ ∈ Λ,
given two strings s,r

• Normalized Weighted Intersection:

N (s,r) ≥ θ⇒H(s,r) ≤
(

1
θ

+ 1 − 2θ

)
|r|.
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• Jaccard:

J (s,r) ≥ θ⇒H(s,r) ≤
(

1
θ
− 1

)
|r|.

• Dice:

D(s,r) ≥ θ⇒H(s,r) ≤
(

2
θ
− 2

)
|r|.

• Cosine:

C(s,r) ≥ θ⇒H(s,r) ≤
(

1
θ

+ 1 − 2θ

)
|r|.

Notice that the pigeonhole signature and the prefix enumeration sig-
nature have to be built with respect to a pre-determined minimum
query threshold θ. Queries with threshold θ′ < θ cannot be answered
correctly using the existing signatures. Queries with threshold θ′ ≥ θ

can be answered without any false negatives.
The original partenum signature proposed in the literature uses

an enumeration strategy in order to reduce the problem of identify-
ing sub-signatures with intersection size larger than or equal to x, to
that of identifying sub-signatures with non-empty intersections (sim-
ilar to the prefix enumeration approach). The idea is simple. Given
sub-signatures consisting of 1 + x partitions, enumerate all possible(1+x

x

)
= 1 + x combinations of x partitions and hash the resulting

combinations instead of each of the original 1 + x partitions individ-
ually. Then, if two sub-signatures agree in at least x partitions they
must agree in at least one hash value. The same idea applies for the
pigeonhole signature only for θ = 1, otherwise the number of combina-
tions explodes, yielding very large signatures. This is hardly a prob-
lem though, since answering intersection queries using the algorithms
described in Section 6 is equally efficient for small and large intersection
thresholds alike.

7.2.5 Top-k Selection Queries

Partitioning and enumeration signatures cannot be used to answer
top-k selection queries due to the fact that a minimum pre-determined
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threshold θ needs to be decided in advance in order to build the signa-
tures. Since the k-th Hamming distance between any data string and
a given query in the worst case could be |Λ|, partitioning and enumer-
ation signatures would degenerate to keeping the entire vectors.

7.2.6 All-Match Join and Self-join Queries

All signatures can be used to answer join and self-join queries, with
algorithms similar to those discussed for the prefix filter in Sections 6.3
and 6.4, by replacing the full inverted index with a signature based
inverted index. Once again, signatures for similarity functions other
than Hamming have to be constructed using a best case scenario, by uti-
lizing the minimum and maximum possible query string lengths defined
by the corresponding length filters, as discussed in Section 7.2.4.

7.2.7 Top-k Join and Self-join Queries

Once again top-k join and self-join queries can be answered by using
the all-match join and self-join algorithms with signature based inverted
indexes instead of full inverted indexes. The algorithms simply identify
any k candidates during initialization, and use the k-th largest Ham-
ming distance as the initial threshold θ. Notice that in the worst case
the initial k-th distance can be |Λ|, and the signature based inverted
index will degenerate to a full inverted index.

7.3 The Filter Tree

When building a full inverted index on the data we can apply various
filtering techniques to reduce the number of candidate strings exam-
ined. That is, we are able to apply various filtering criteria based on
the specific properties of each similarity function (e.g., norm filtering)
to prune strings while scanning a particular inverted list.

We can generalize this idea by applying the various filtering algo-
rithms, using a filter tree. A filter tree is a combination of trees. For
example, in the first level of the tree we partition strings according
to their Lp-norms. In the second level of the tree we could partition
strings according to the tokens contained in their idf sorted prefixes. In
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the third level of the filter tree we could use a positional filter for every
prefix token. In other words, at the first level we use an interval tree to
partition strings according to norms. Then, for every leaf node of the
interval tree we create a suffix tree that indexes only the prefix tokens
of all strings within the Lp-norm range of that particular interval tree
leaf node. Finally, at the leaf nodes of the suffix trees we create a forest
of B-trees that partitions strings according to the position of the prefix
token corresponding to that particular leaf node. At the last level of
the filter tree we build a forest of inverted indexes containing all the
qualifying strings, as they are filtered out level by level.

For example, a certain path down the tree might correspond to all
strings with Lp-norm equal to 100, that contain q-gram ‘abc’ in their
idf sorted prefix, at absolute position 10 within the string. A query
might have to access several paths down the tree simultaneously (e.g.,
it might have to follow multiple Lp-norm intervals). In the end, we
merge the lists corresponding to each candidate path and finally take
the union of resulting strings.

The filter tree can be implemented straightforwardly by construct-
ing one inverted list per token, and then sorting the list in the order
of the filters specified by the filter tree. In the example above, each
inverted list would be sorted, first by the norms of the strings con-
tained in the list, and then by the position of that particular token in
each string. Given a query string, one can identify all candidate strings
by using binary search to locate on every token list the appropriate
norm interval (the norm filter); and subsequently, for every norm the
appropriate positions interval (the positional filter). By examining only
those token lists that correspond to the tokens contained in the idf pre-
fix of the query (the prefix filter), the resulting strings are the strings
that would be visited by the actual filter tree.

The order in which the filters are applied significantly affects the
performance of the filter tree. Ordering depends on query and data
characteristics, as well as on the filtering techniques used. Intuitively,
simpler, easy to evaluate filters should be used as close to the root of the
filter tree as possible. Also, filters that result in non-overlapping parti-
tions of strings should be evaluated first, since these filters reduce the
total amount of candidate paths produced. For example the Lp-norm
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filter results in a non-overlapping partitioning of strings since every
string corresponds to exactly one Lp-norm value; on the other hand
the prefix filter results in an overlapping partitioning of strings, since a
single string will end up in the partition of more than one prefix tokens.

Notice that using the filter tree does not affect what types of algo-
rithms are used to merge lists at the leaf level of the filter tree. In
particular, specific optimizations can still be applied at that point to
speed-up list merging. For example, one can still use the heaviest

first algorithm to merge lists by applying the incremental Lp-norm
tightening principle (see Lemma 6.15), even though an initial Lp-norm
filter has already been applied at the top of the filter tree.

7.4 Index Updates

Similar updating issues with the ones discussed for full token based
inverted indexes hold for signature based inverted indexes. In order to
be able to perform efficient updates we need to represent token lists
either as binary trees or linked lists in main memory, or as B-trees
in external memory. Some signature techniques suffer from problems
similar to those for inverted indexes when token weights get updated.
For example, for prefix signatures a single token weight update can
change the sort order of tokens, and as a consequence, affect the prefix
signature of every other string in the index. In that case, the complete
index needs to be rebuilt to guarantee correctness. Delayed propagation
of updates in this case will inevitably lead to false dismissals. The same
problem occurs with the prefix enumeration signature. The pigeonhole
signature does not depend on token weights and hence can support
updates efficiently.

7.5 Discussion and Related Issues

Filtering techniques are the preferred algorithm for evaluating join
queries, due to the small size of the resulting inverted index. The pre-
fix filter is a very general technique that works independently of the
weighing scheme used. The pigeonhole signature is limited to uniform
weights. The prefix enumeration signature can be used for arbitrary
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weights, it has larger size on average than the prefix signature, but it
results in tighter pruning. The filter tree has proved to be very effective
for answering selection queries, but its performance depends heavily on
the order in which filters are composed. It is difficult to compare fil-
tering techniques with algorithms based on full inverted indexes. The
relative performance depends on whether the indexes can fit in main
memory and also on the query and data characteristics. There exists
an inherent tradeoff between using the index to compute the exact sim-
ilarity between the query and data strings, over using the index as a
filtering step that requires a subsequent verification step.

7.6 Related Work

A first instantiation of the prefix principle was proposed by Sarawagi
and Kirpal [60]. The prefix filter was later formalized by Chaudhuri
et al. [19]. Xiao et al. [75] proposed improved pruning conditions for
Jaccard, Dice, and Cosine similarity for the prefix filter, assuming unit
token weights. The extensions to arbitrary weights discussed here are
straightforward. Chang and Lawler [17] used the idea of partitioning
the strings using the pigeonhole principle for computing both Hamming
distance and edit distance. The same partitioning strategy was used by
Wu and Manber [72] for the agrep utility. The prefix enumeration and
partenum signatures were proposed by Arasu et al. [6].

Bayardo et al. [10] proposed various join algorithms and optimiza-
tions related to building and indexing prefix signatures, and using
advanced list merging algorithms to evaluate join queries, similar to
the ones described in Section 6.3. Xiao et al. [75] extended the algo-
rithms by Bayardo et al. to access parts of the suffix of strings as
well in order to improve filtering efficiency, assuming that datasets fit
in main memory. Top-k join queries were extensively studied by Xiao
et al. [74], assuming that the dataset fits in main memory. In addition,
Xiao et al. [74] discussed various optimizations specifically tailored for
unit weights. The filter tree was proposed by Li et al. [48].



8
Algorithms for Edit Based Similarity

In this section we will cover evaluation of edit based similarity. We will
show that the techniques introduced for set based similarity functions
can be applied to answer unweighted edit distance queries. We will also
present data structures based on tries and B-trees that can be used to
answer unweighted, weighted, and normalized edit distance.

8.1 Inverted Indexes

From the outset it does not appear that edit based similarity is related
to set based similarity, and by extension, to token based inverted
indexes. Although, careful observation reveals that this is not true for
the case of simple, unweighted edit distance (i.e., where all edit opera-
tions have unit cost).

Lemma 8.1(q-gram Intersection Filter for Edit Distance). Let
Λ be the universe of q-grams. Given sequences s = λs

1 · · ·λs
m and r =

λr
1 · · ·λr

n, λs
i ,λ

r
j ∈ Λ, and edit distance threshold θ, then

E(s,r) ≤ θ⇒ I(s,r) ≥max(m,n) − q + 1 − qθ.

368
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Proof. To prove the claim, notice that s consists of |s| − q + 1 q-grams
and r of |r| − q + 1 q-grams. The maximum number of q-grams is x =
max(|s|, |r|) − q + 1. Each edit operation can affect at most q q-grams,
thus θ edit operations can affect at most qθ q-grams. Hence, if E(s,r) ≤
θ, then with θ edit operations we can obtain s from r (or r from s) if
and only if s and r have at least x − qθ q-grams in common.

The intuition is that strings within a small edit distance must have
a large number of q-grams in common. Imagine that string s can be
obtained from string r with a replacement of a single character. Then,
intuitively, in the worst case s and r differ in at most q q-grams, since
one edit operation can affect at most q q-grams.

By using Lemma 8.1 an edit distance constraint is converted
into a simpler Intersection similarity constraint on q-grams. Thus, all
algorithms described in Section 6, suitable for computing Weighted
Intersection similarity with unit token weights, can now be applied to
evaluate edit distance (notice that the actual token weighing function
W is irrelevant when evaluating edit distance).

Given that strings with lengths shorter than q result in empty q-
gram sets, as already discussed, for implementation purposes we can
extend all strings with q − 1 copies of a special beginning and ending
character # /∈ Σ to avoid special cases. The intersection constraint of
Lemma 8.1 now becomes

E(s,r) ≤ θ⇒ I(s,r) ≥max(|s|, |r|) + q − 1 − qθ,

given that the total number of q-grams per string increases to |s| +
2(q − 1) − q + 1.

For brevity, in the rest we refer to the q-gram intersection thresh-
old as

τ = max(|s|, |r|) − q + 1 − qθ

(or τ = max(|s|, |r|) + q − 1 − qθ depending on whether extended
q-gram sets are used).

Notice that Lemma 8.1 results in a very loose intersection constraint
that does not take into account the positions of matching q-grams
within the strings. Thus, a variety of optimizations, based on q-gram
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positions, can be applied over the existing inverted index based algo-
rithms. It holds that

Lemma 8.2. Given strings s = {(λs
1,p

s
1), . . . ,(λ

s
m,ps

m)} and r =
{(λr

1,p
r
1), . . . ,(λ

r
n,pr

n)}, let the matching set of positional q-grams be
s ∩ r =

⋃{(λs
i ,p

s
i ),(λ

r
j ,p

r
j)}. Then

E(s,r) ≤ θ⇒ ∀λs
i ,λ

r
j ∈ s ∩ r : |ps

i − pr
j | ≤ θ.

Proof. Assuming that E(s,r) ≤ θ and that a q-gram λs
i ∈ s matches

q-gram λr
j ∈ r with |ps

i − pr
j | > θ, clearly we need at least θ + 1 edit

operations to transform the position of λs
i into that of λr

j , without
affecting any other q-grams, to obtain one q-gram set from the other.
This is a contradiction.

The claim states that if two strings are within edit distance θ, then
the positions of the matching q-grams between the two strings cannot
differ by more than θ.

We can use Lemma 8.2 when scanning inverted lists to prune
candidates based on positional information of q-grams, by comparing
against the positions of these q-grams in the query string. Positional
information can be used for all algorithms discussed in Section 6. In
the algorithms, while scanning a list corresponding to a query q-gram
with position p, all strings whose positions for that q-gram differ by
more than θ from p can be ignored. A string is considered a viable
candidate if and only if the resulting q-gram intersection with the
query exceeds threshold τ .

Finally, we can state a simple length filter for edit distance, which
can be used in all algorithms for pruning.

Lemma 8.3 (Edit Distance L0-norm Filter). Given strings s,r

and edit distance threshold θ

E(s,r) ≤ θ⇒ ||s| − |r|| ≤ θ.
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When using the list merging algorithms proposed in Section 6 for
set based similarity, the resulting set of strings forms the exact answer
to the query. In contrast, for edit based similarity, the resulting set of
strings is a super set of the exact answer, since the various filtering
techniques are used to prune candidate strings, but not to compute
the actual edit distance between the query and each string (that would
only be possible if the algorithm maintained all the discovered q-gram
information per string, which would make the book-keeping cost pro-
hibitive). This implies that a verification step is necessary in order
to filter out false positives. The verification step is performed by ver-
ifying that the edit distance between each candidate string and the
query is indeed smaller than or equal to the query threshold. For that
purpose we can use the fast edit distance verification algorithm pre-
sented in Section 2.1. This is in contrast to the same algorithms used
for set based similarity measures, where the actual similarity is com-
puted during index traversal, and no subsequent verification step is
needed.

One pitfall of this approach is that for a large enough threshold
θ, short query lengths and an inappropriate q-gram length, the q-
gram intersection constraint might return a non-positive value. In other
words, potential answers might not have any q-grams in common with
the query. Given that the list merging algorithms examine only those
inverted lists that correspond to query q-grams, answers that do not
share any q-grams with the query will never be discovered. In this case,
only a linear scan of the inverted index would be able to identify all
answers. For example, assume that θ = 1, q = 2, and v = abc. Then,
according to Lemma 8.1, potential answers to the query need to have
at least 3 − 2 + 1 − 2 = 0 q-grams in common. String s = adc is a valid
answer for this query, yet it does not have any q-grams in common with
v. Similar counter-examples exist for the case of extended q-gram sets.

Finally, it should be noted here that, as a consequence of using
q-grams to evaluate the edit distance, these techniques cannot be
extended for evaluating either weighted (i.e., where each edit opera-
tion has a specific weight) or normalized edit distance (i.e., where the
distance is normalized by the length of the strings).



372 Algorithms for Edit Based Similarity

8.2 Filtering Techniques

8.2.1 The Prefix, Prefix Enumeration, and Pigeonhole
Signatures

Based on Lemma 8.1 and the fact that we are dealing with unit token
weights, we can use all filtering techniques discussed in Section 7 with-
out modifications. We simply build string signatures for Intersection
similarity. Given that we are dealing with unit weights, we sort tokens
using idf weights. Recall that this ordering has the advantage that pre-
fixes contain the least frequent tokens, which decreases the probability
of collisions that lead to false positives. Given query string v and an
arbitrary data string s, Lemma 8.1 states that the intersection of v

and s need to be at least τ = max(|v|, |s|) − q + 1 − qθ. According to
Definition 7.1, given that we have a maximum of max(|v|, |s|) − q + 1
tokens per string, we need at most τ − 1 tokens in the string suffix
to guarantee no false negatives. Hence, the prefix signature has size
equal to

[max(|v|, |s|) − q + 1] − (τ − 1) = qθ + 1.

Thus, the prefixes of all strings have a fixed size of qθ + 1 q-grams,
which is independent of the query or data string length, and depends
only on edit distance threshold θ.

An additional optimization of the prefix filter for top-k join and
self-join queries is also possible, based on the fact that we are dealing
with unit token weights, as discussed in Section 7.1.5.

There is no known way of extending filtering algorithms for evalu-
ating weighted and normalized edit distance.

8.2.2 The Mismatch Filter

The mismatch filter is an extension of the prefix filter that takes into
account the positional information and the content of mismatching q-
grams between two prefix signatures, to perform tighter pruning.

The q-gram Intersection Filter for Edit Distance (see Lemma 8.1)
is based on the fact that since one edit operation can affect at most q
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q-grams we can count the minimum number of common q-grams that
two strings need to have to be within θ edit operations.

An inverse argument is based on the number of q-grams that the
strings do not have in common (i.e., the mismatching q-grams). The
question now becomes what is the minimum number of edit operations
needed to cause the observed mismatching q-grams, which is equal to
the number of edit operations needed to fix these q-grams. This num-
ber is at least as large as the number of edit operations needed to
simply destroy all mismatching q-grams. For example, consider the two
strings s = ‘One Laptop’ and r = ‘1 Laptop’. The positional 2-gram
sets are

1 2 3 4 5 6 7 8 9
‘On’ ‘ne’ ‘e ’ ‘ L’ ‘La’ ‘ap’ ‘pt’ ‘to’ ‘op’
‘1 ’ ‘ L’ ‘La’ ‘ap’ ‘pt’ ‘to’ ‘op’
Assuming an edit distance threshold θ = 3, the mismatching posi-

tional 2-grams belonging to s are (‘On’, 1), (‘ne’, 2), (‘e’, 3) (based on
Lemma 8.2). Notice that a replacement of ‘n’ with ‘1’ will affect two
2-grams at the same time. Hence, only two edit operations are needed
in this case to destroy all three 2-grams, one for 2-grams (‘On’, 1), (‘ne’,
2) and one for 2-gram (‘e ’, 3).

Reasoning about mismatching q-grams leads to the following
statement:

Lemma 8.4(Mismatch Filtering). Consider strings s,r and the set
of positional mismatching q-grams Qs→r = {(λs

1,p
s
1), . . . ,(λ

s
� ,p

s
�)},λs

i ∈
s. Let φ be the minimum number of edit operations needed to destroy
all q-grams in Qs→r. Then, E(s,r) ≥ φ.

Proof. If we need exactly φ operations to simply destroy all mismatch-
ing q-grams, we need at least φ operations to correct the same q-grams,
in the best case scenario.

We call the minimum number of edit operations needed to destroy
a set of q-grams Q, the minimum destroy operations for Q. We can
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improve the minimum destroy operations bound by first computing
the number of operations needed to destroy the q-grams in Qs→r and
then in Qr→s. Then, we take the larger of the two to be the minimum
destroy operations of the mismatching q-grams of pair s,r.

An optimal greedy algorithm for computing the minimum destroy
operations with cost linear in the number of q-grams is shown as Algo-
rithm 8.2.1. The algorithm selects the next unprocessed q-gram and
makes a conceptual replacement of its last character, in essence destroy-
ing the current q-gram and all subsequent q-grams incident on this
character. The algorithm iterates until no more q-grams are left to
destroy.

Algorithm 8.2.1: Minimum Destroy Operations(Q)

Let Q = {(λ1,p1), . . . ,(λ�,p�)} s.t. pi < pj ,∀i < j

e← 0, p← 0
for all (λi,pi) ∈ Q

do




if pi > p

then
{

e← e + 1
p← pi + q − 1

return e

Given query string v, the prefix filter principle dictates that a string
s is a viable candidate if and only if the prefixes of v and s have a
non-empty intersection. Given that the prefixes have a fixed size of
qθ + 1 q-grams, in the worst case the prefix of a candidate can have
as many as qθ mismatching q-grams. This yields ample opportunity
for the mismatch filter to conclude that there are enough mismatching
q-grams within the prefixes to prune the candidate.

In fact, we can strengthen the mismatch filter pruning condition
even further by computing the minimum number of mismatching q-
grams within the prefix of a string that will guarantee an edit distance
larger than θ. The length of the prefix containing these q-grams can
potentially be smaller than qθ + 1, depending on how much overlap
the q-grams in the shorter prefix have. We call the shorter prefix the
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mismatch prefix. If two strings have an empty mismatch prefix inter-
section, then they contain enough mismatching q-grams for the edit
distance to be larger than θ and the pair can be pruned using the
shorter prefix.

We can identify the mismatch prefix by iteratively computing the
minimum destroy operations of all prefixes with lengths in the range
[θ + 1, qθ + 1]. We stop once the minimum destroy operations of the
current prefix is larger than θ. The cost of this algorithm is quadratic
in qθ + 1. To reduce this cost we can identify the appropriate prefix
using binary search, based on the monotonicity of the minimum destroy
operations.

Lemma 8.5. Given a set of q-grams Q and any subset Q′ ⊂ Q

Minimum Destroy Operations(Q′) ≤Minimum Destroy Operations(Q).

The algorithm is shown as Algorithm 8.2.2.

Algorithm 8.2.2: Mismatch Prefix(s)

Tokenize string: s = {(λs
1,1), . . . ,(λs

m,m)} s.t. idf(λs
i ) ≥ idf(λs

j), i < j

a← θ + 1, c← qθ + 1
while a < c

do




b← (a + c)/2
e←Minimum Destroy Operations({(λs

1,p1), . . . ,(λs
b,pb)})

if e ≤ θ

then a← b + 1
else c← b

return a

8.3 Trees

8.3.1 Tries and Suffix Trees

The simplest way of using a trie to find strings within small edit
distance θ from the query is to generate all possible strings within
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edit distance θ from the query and traverse the trie using all resulting
queries. Inversely, one can generate all possible strings within edit
distance θ from the data strings and pre-construct a trie on the
augmented dataset. Clearly, the first approach has very high query
cost and the second a very high space cost.

A better approach is to compute an active set of trie nodes incre-
mentally, by considering all prefixes of the query, starting from the
empty string ∅. An active node is one that corresponds to a trie string
that is within edit distance θ from the current prefix of the query string.
Consider the trie in Figure 8.1 and query string v = ‘Found’ with θ = 1.
For simplicity we denote each node in the tree using the full string cor-
responding to that node; in practice only a node identifier is used to
conserve space. The active nodes for each prefix of v, along with their
edit distance from that prefix, are shown in Table 8.1.

Let N be a node in the trie. Denote with σ(N) the label of the
node, and with s(N) the full string corresponding to that node (i.e.,
the sequence of labels in the path from the root of the trie to node N).
Denote with vi = σ1 · · ·σi,0 ≤ i ≤ |v|, the i length prefix of query v

(let v0 denote the empty string), and let Ai denote the set of active
nodes in the trie for query prefix vi. Let every entry of Ai be a pair
(N,E(s(N),vi)). We initialize A0 for prefix v0 = ∅ by adding the root
node of the trie. The root corresponds to the empty string ∅ as well
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Fig. 8.1 A simple trie stricture.
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Table 8.1. Active nodes for each prefix of query
“Found” on the trie of Figure 5.1.

∅ F Fo Fou Foun Found

U, 1 U, 1 Fu, 1 Fu, 1 Fun, 1 Fund, 1
F, 1 F, 0 Fo, 0 Fo, 1
C, 1 C, 1 Foo, 1 Foo, 1

Fu, 1 Fe, 1
Fo, 1
Fe, 1

(hence active node ∅ is associated with edit distance E(∅,∅) = 0).
We complete set A0 by adding all nodes corresponding to strings with
lengths in the interval [1,θ]. These strings correspond to performing
from 1 up to θ arbitrary insertions to the empty string, and are still
within edit distance θ from v0.

The key observation now is that active set Ai can be computed
directly from set Ai−1. The recurrence relation can be derived from
the recurrence relation of the dynamic programming algorithm for edit
distance verification (Algorithm 2.1.1). The intuition is that we are
trying to incrementally compute the dynamic programming matrix of
Algorithm 2.1.1 for all strings contained in the trie at once (by virtue
of computing the edit distance between the query string and all active
paths of the trie).

Given query prefix vi,1 ≤ i ≤ |v|, we consider all strings with lengths
within the interval [i − θ, i + θ] (i.e., the L0-norm filter bounds for
vi). A0 corresponds to the first row of the dynamic programming
matrix. Every time we increase i we need to compute a new row in
the matrix. The new row is computed based on the values in the previ-
ous row. Assume that we are computing Ai from Ai−1 for prefix vi. The
algorithm proceeds by examining every entry in set Ai−1 and taking
three actions:

(1) It determines whether an active node N should be added in
set Ai by increasing its edit distance by one. This corresponds
to a deletion of character σi (and value d1 in Algorithm 2.1.1).

(2) It tests whether there exists a child node N ′ of N , s.t.
σ(N ′) = σi. In that case N ′ is added in Ai with edit
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distance equal to E(s(N ′),vi) = E(s(N),vi−1). This action
corresponds to a diagonal move down the matrix for a match-
ing character (and value d3 in Algorithm 2.1.1). An addi-
tional sub-action here is that the algorithm needs to consider
all new strings contained in the trie that have lengths in
the interval [|s(N ′)| + 1, |s(N ′)| + (θ − E(s(N ′),vi))]. This
action corresponds to inserting at the end of string s(N ′),
θ − E(s(N ′),vi) arbitrary characters — all these strings are
still within edit distance at most θ from vi, given that
E(s(N ′),vi) ≤ θ.

(3) It considers all child nodes N ′ of N , s.t. σ(N) �= σi. These
nodes are added in the active set Ai if and only if
E(s(N),vi−1) < θ. This action corresponds to a diagonal
move down the matrix for a non-matching character (and
value d3 in Algorithm 2.1.1). In this case, the algorithm
does not have to consider strings with lengths in the interval
[|s(N ′)| + 1, |s(N ′)| + (θ − E(s(N ′),vi))]. The reason is that
all these nodes have been added already by a matching parent
node of N ′, through step 2 above, if necessary.

After all active nodes in Ai−1 have been processed the algorithm
discards duplicate nodes in Ai by preserving only the copy with the
minimum edit distance from vi (this corresponds to the minimum oper-
ation in Algorithm 2.1.1). This step is necessary since an active node
can be processed multiple times as a child of another active node. For
that purpose, we can organize the sets of active nodes as hash tables.
Initially, table Ai is empty. As we process nodes in table Ai−1 we probe
set Ai, and if the node exists, we update its edit distance if needed, oth-
erwise we insert the node. Notice that the order in which we process
nodes from table Ai−1 is not important. We simply iterate through all
entries in the hash table in hash value order. The full algorithm appears
as Algorithm 8.3.1.

Notice that Algorithm 8.3.1 can be used to compute all answers to
a query string incrementally, as characters are typed by the user one
by one. Every time the user types a new character, we use the already
computed set A|v| to compute a new set A|v|+1, by continuing from
where the algorithm left off.
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Algorithm 8.3.1: Edit Distance on Trie(v,θ)

Let v = σ1 · · ·σ|v|
Ai is a hash table of pairs (N,e) with key N

A0← (∅,0)
for i = 1 to θ

do
{
for each node N at distance i from root: A0← (N,i)

for i = 1 to |v|


for all (N,e) ∈ Ai−1


if e + 1 ≤ θ // Case 1{
if (N,e′) ∈ Ai : Ai← (N,min(e + 1,e′))
else Ai← (N,e + 1)

for all children N ′ of N


if σ(N ′) = σi // Case 2

do




if (N ′,e′) ∈ Ai : Ai← (N ′,min(e,e′))
else Ai← (N ′,e)

for j = 1 to θ − e

do




for all descendants N ′′ of N ′, j characters
away
do

{
Ai← (N ′′,θ − e + j)

else if e + 1 ≤ θ // Case 3

do
{
if (N ′,e′) ∈ Ai : Ai← (N ′,min(e + 1,e′))
else Ai← (N ′,e + 1)

return A|v|

A drawback of the trie based algorithm is that it will not scale
for large edit distance thresholds since it will degenerate fast into a
complete traversal of the higher levels of the trie structure. A plethora
of advanced trie based algorithms for reducing the number of paths
traversed have been proposed in the past. The algorithms assume
complete knowledge of the query a priori. The same algorithms can
be straightforwardly modified to work on suffix trees. Finally, it is
not hard to see that these techniques can be adapted for computing
weighted edit distance (given a substitution matrix and a cost function
for each edit operation).
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8.3.2 B-Trees

An alternative approach is to use a B-tree structure to store the strings
in a one-dimensional order that provides guarantees on the retrieval of
strings based on unweighted edit distance.

To index the strings with the B-tree, it is necessary to construct a
mapping from the string domain to integer space. Formally:

Definition 8.1(String Order). Given the string domain Σ∗, a string
order is a mapping function φ : Σ∗→ N, mapping each string to an
integer value.

The definition above implies that the mapping function φ uniquely
decides the string order. Therefore, we abuse notation to represent with
φ both the actual string order imposed as well as the mapping function
itself. Note that some strings might be mapped to the same integer by
the function φ. In many cases, the use of a concrete mapping function
is ineffective on both computation and storage. To alleviate this prob-
lem, it is better if we do not construct the mapping explicitly. This
requirement can be fulfilled if the string order satisfies the following
desirable property on comparability:

Property 8.1 (Comparability). A string order φ is efficiently com-
parable if it takes linear time to verify if φ(s) is larger than φ(r) for
any string pair s and r.

The verification method is supposed to take linear time with respect
to the lengths of the strings. It is easy to see that the insertion and
deletion operations on the B-tree rely only on the comparability of
the string order. Therefore, any string order having Property 8.1 can
be used to index strings on the B-tree. Algorithm 8.3.2 can be used
for locating the first leaf node of the tree potentially containing a
given target string. Each intermediate node N in the B-tree contains
m splitting strings {s1, . . . ,sm} and m + 1 pointers to children nodes
{N1, . . . ,Nm+1}. The algorithm identifies the first splitting string with
mapping value larger than that of the query string and iteratively
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Algorithm 8.3.2: FindNode(v,N)

if N is the leaf node: return N

for each splitting string sj ∈ N

do
{
if φ(v) ≤ φ(sj) : return FindNode(v,Nj)

return FindNode(v,Nm+1)

searches the subtree from the corresponding pointer all the way to the
leaf level of the tree. The implementation of insertion, deletion, and
split operations follows similar strategies by using the new comparison
oracle between φ(s) and φ(r).

From Algorithm 8.3.2, we can see that all strings stored in the
sub-tree rooted at Nj have mapping values in [φ(sj−1),φ(sj)] by
construction. To simplify notation, we say that s ∈ [si,sj ] if φ(si) ≤
φ(s) ≤ φ(sj).

The following property enables the B-tree structure to handle range
queries based on edit distance:

Property 8.2 (Lower Bounding). A string order φ is lower bound-
ing if it efficiently returns the minimal edit distance between string v

and any s ∈ [si,sj ].

With Property 8.2 the B-tree can handle range queries using Algo-
rithm 8.3.3. In the algorithm we use LB(si, [sj−1,sj ]) to denote the
lower bound on the edit distance between si and any string s ∈
[sj−1,sj ]. Algorithm 8.3.3 iteratively visits the nodes with lower bound
edit distance no larger than θ and verifies the strings found at the leaf
level of the tree using Algorithm 2.1.1. Notice that the algorithm might
have to traverse multiple paths down the tree (as opposed to the stan-
dard B-tree traversal algorithm). The minimal and maximal strings sl

and su indicate the boundaries of any string in a given subtree with
respect to the string order φ. This information can be retrieved from
the parent node, as the algorithm implies. It is easy to verify that this
algorithm accurately returns all strings within distance θ from query
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Algorithm 8.3.3: RangeQuery(v,N,θ,sl,su)

if N is the leaf node

do




for each s ∈ N{
if Edit Distance Verification(v,s,θ)
do

{
Include s in query result

else

do




if LB(v, [sl,s1]) ≤ θ

do
{
RangeQuery(v,N1,θ,s

l,s1)
for j = 2 to m

do
{
if LB(v, [sj−1,sj ]) ≤ θ

do
{
RangeQuery(v,Nj ,θ,sj−1,sj)

if LB(v, [sm,su]) ≤ θ

do
{
RangeQuery(v,Nm+1,sm,su)

string v if the lower bounding property holds. The efficiency of the algo-
rithm depends on the tightness of the lower bound. We discuss concrete
string orders that satisfy Property 8.2 in the next section.

If a string order φ supports range queries, it also directly supports
top-k selection queries on the B-tree structure. We simply use a min-
heap to keep the current top-k similar strings and update the threshold
θ with the distance value of the top element in the heap. The detailed
algorithm is shown in Algorithm 8.3.4.

The standard all-match join algorithm on B-trees for traditional
one-dimensional data discovers all node pairs {N1,N2} on the same
level of the tree, with non-empty value overlap on their ranges.
Expansions are conducted by adding join candidates after testing every
pair of children drawn from N1 and N2, respectively. For string join
queries with threshold θ the standard algorithm is applicable if the
following property holds:

Property 8.3(Pairwise Lower Bounding). Given two string inter-
vals [sl,su] and [rl, ru], the string order φ is pairwise lower bounding if
it returns the lower bound on the distance between any s ∈ [sl,su] and
any r ∈ [rl, ru].
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Algorithm 8.3.4: TopKQuery(v,N,θ,sl,su,H)

if N is the leaf node

do




for each s ∈ N

do




if Edit Distance Verification(v,s,θ)

do




Insert s into H

if |H| > k : H.pop
Update the global threshold θ

else

do




if LB(v, [sl,s1]) ≤ θ

do
{
TopKQuery(v,N1,θ,s

l,s1,H)
for j = 2 to m

do
{
if LB(v, [sj−1,sj ]) ≤ θ

do
{
TopKQuery(v,Nj ,θ,sj−1,sj ,H)

if LB(v, [sm,su]) ≤ θ

do
{
TopKQuery(v,Nm+1,sm,su,H)

We use LB([sl,su], [rl, ru]) to denote the lower bound edit distance
between the two string intervals. This property allows the direct adop-
tion of the standard join algorithm, as is shown in Algorithm 8.3.5. The
algorithm recursively expands the nodes in depth-first order, to give a
clear idea on the joining process. In practice we can use a heap to store
the node pairs and pop out the next candidate to join if it satisfies the
minimal distance lower bound.

Finally, this B-tree index scheme is also capable of handling nor-
malized edit distance. This is achievable if the maximal length of the
strings within an interval can be estimated by the string order:

Property 8.4(Length Bounding). Given any string interval [si,sj ],
the string order φ is length bounding if it efficiently returns an upper
bound on the length of any string s ∈ [si,sj ].

The length bounding property can be combined with any of the
query processing algorithms, by dividing the lower bound edit distance
with the maximal length of the string intervals. Therefore, this index
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Algorithm 8.3.5: JoinQuery(N1,N2,θ)

if N1 and N2 are leaf nodes

do




for each s ∈ N1 and r ∈ N2

do
{
if Edit Distance Verification(s,r,θ)
do

{
Insert (s,r) into the result

else

do




for child node Ni of N1 and child node Nj of N2

do




for all intervals [sl,su] ∈ Ni, [rl, ru] ∈ Nj

do

{
if LB([sl

i,s
u
i ], [sl

j ,s
u
j ]) ≤ θ

do
{
JoinQuery(Ni,Nj ,θ)

Table 8.2. Necessary properties with respect to query type and dis-
tance function.

Range Top-k All-Match Join

Edit Distance P8.1,P8.2 P8.1,P8.2 P8.1,P8.3
Normalized E.D. P8.1,P8.2,P8.4 P8.1,P8.2,P8.4 P8.1,P8.3,P8.4

structure seamlessly supports both edit distance and normalized edit
distance, if the underlying string order is consistent with these prop-
erties. We summarize the necessary properties the mapping function φ

needs to have in order to be able to support the three types of string
similarity queries based on edit distance and normalized edit distance
in Table 8.2.

8.3.2.1 Dictionary order

Dictionary Order is the most straightforward choice for the string
order. Dictionary order obeys comparability, lower bounding, and
pairwise lower bounding. It does not satisfy length bounding. There-
fore, it can be used to index on edit distance for range, top-k, and
all-match join queries.

Given an alphabet Σ, there is a pre-defined order on all letters in
Σ, i.e., {σ1,σ2, . . . ,σ|Σ|}. We simply assume that the index of σi in Σ
can be calculated by the permutation function π(σi). Then, we map the
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string domain to an integer space where strings are sorted in dictionary
order. We denote this sorted dictionary order with φd.

It is obvious that dictionary order follows the property of compa-
rability. Given two strings s and r, it is sufficient to find the most
significant position p where the two strings differ. If π(s[p]) < π(r[p]),
we can assert that s precedes r in dictionary order, and vice versa. This
comparison can be done in linear time with respect to the length of the
strings — we do not need to actually instantiate order φd.

Dictionary order is also consistent with the property of lower bound-
ing. Given a string interval [φd(si),φd(sj)] (or for simplicity [si,sj ]) in
dictionary order, we know that all strings in this interval must share
the longest common prefix of si and sj , i.e., LCP (si,sj). To be more
precise, if s ∈ [si,sj ], we have:

∀p ∈ [1, |LCP (si,sj)|], s[p] = si[p] = sj [p]. (8.1)

Let p = |LCP (si,sj)|. In fact, we can actually use letter s[p + 1] to
refine the lower bound even further:

si[p + 1] ≤ s[p + 1] ≤ sj [p + 1], p = |LCP (si,sj)|. (8.2)

For example, consider the string interval [‘food’, ‘found’]. Any string
within this interval must have the prefix ‘fo’ and the third character
must be in the interval [‘o’, ‘u’]. The suffix after the third character can
be any valid string in the alphabet (with arbitrary length). Notice that
this does not imply that all of these strings with unknown arbitrary
suffixes are actually contained in interval [‘food’, ‘found’]. We simply
return a super-set of the strings in the interval which is sufficient for
computing a correct (albeit) loose lower bound.

Equation (8.2) is valid only if |si| > |LCP (si,sj)|. If |si| =
|LCP (si,sj)| (i.e., si is completely covered by sj), then no further
refinement of the lower bound is possible.

Given Equations (8.1) and (8.2), we can now derive an efficient
lower bound computation between a query string v and any string s ∈
[si,sj ], based on the edit distance verification Algorithm 2.1.1. Table 8.3
shows a running example of the computation of the lower bound on the
edit distance between query ‘fund’ and interval [‘food’, ‘found’], with
threshold θ = 1. Notice that the third row of the table uses a candidate
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Table 8.3. Edit distance lower bound estima-
tion between a string and a string interval for
dictionary order.

∅ f u n d

∅ 0 1 2 3
f 1 0 1
o 2 1 1 2
{‘o’, . . ., ‘u’} 3 1 2 3

letter set {‘o’,. . . ,‘u’} to represent the string interval. A query letter
will match the third row if and only if that letter is contained in the
respective set of letters. Since the given interval provides information
only on the three first characters of the strings within the interval, the
algorithm stops on the third row and estimates the lower bound on the
edit distance as the smallest value on that row (assuming a best case
scenario where a string exists within the interval matching the suffix of
the query exactly). In this case the algorithm returns 1 as the estimated
lower bound between the given query string and the string interval. We
skip the details of the algorithm which can be easily implemented by
modifying Algorithm 2.1.1.

Similarly, we can compute a lower bound edit distance between two
string intervals [sl,su] and [rl, ru], by combining the prefixes of the
boundary strings from these two intervals.

Notice that it is impossible to compute φd(s) for a given string s,
given that there is an infinite number of strings in the dictionary order
between any two string. As already mentioned it is not necessary to
instantiate the mapping, since we can efficiently verify in linear time the
order of two strings. In practice we store the actual keys inside each B-
tree node instead of the mapping, which of course increases the storage
requirements of this structure (as is usually the case for string B-trees).

8.3.2.2 Gram counting order

The dictionary order collects useful information only on the pre-
fixes of the strings. In many cases, unfortunately, the discriminative
information of the strings is scattered in different positions. This moti-
vates the use of q-grams instead of prefixes to summarize the string
set. In this section, we describe a string order based on counting the
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number of q-grams within a string. We use a hash function to map q-
grams to a set of buckets of fixed cardinality. We show that the Gram
Counting Order has the properties of comparability, lower bounding,
pairwise lower bounding, and length bounding. Therefore, it can be
used to index on edit distance and normalized edit distance for range
and top-k selection queries, and join queries.

A q-gram set can be intuitively represented as a vector in a high
dimensional space where each dimension corresponds to a distinct q-
gram (i.e., the vector space model). This solution, however, incurs high
storage cost. To compress the information on the vector space, we use a
hash function to map each q-gram to a set of L buckets, and count the
number of q-grams in each bucket. Thus, the q-gram set is transformed
into a vector of L non-negative integers.

The q-gram mismatch lemma (Lemma 8.4) states that the edit dis-
tance between two strings s,r is no smaller than

E(s,r) ≥max
( |Q(s) \ Q(r)|

q
,
|Q(r) \ Q(s)|

q

)
. (8.3)

Here, Q(s) \ Q(r) is the set of q-grams in Q(s) and not Q(r), and vice
versa. After mapping strings from gram space to the bucket space, a
new lower bound holds. If s′ and r′ are the L-dimensional bucket vector
representations of s and r, respectively, the edit distance between s and
r is no smaller than

max


 ∑

s′[�]>r′[�]

s′[�] − r′[�]
q

,
∑

r′[�]>s′[�]

r′[�] − s′[�]
q


 (8.4)

for 1 ≤ � ≤ L. Stated simply, the edit distance should be at least as
large as the largest difference in the q-gram counts between any pair of
corresponding buckets in the bucket representation (correcting for the
fact that one edit operation can change up to q q-grams).

To achieve a tighter lower bound we apply z-order on the q-gram
counting vectors to cluster strings with similar vectors as best as pos-
sible in the one-dimensional B-tree space. Given a vector s′, z-order
interleaves the bits from all vector components in a round robin fash-
ion. For example, let the binary values of the vector components be
‘11’, ‘10’, ‘01’, ‘11’, for L = 4. Then, the z-order value of the vector is
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‘11011011’. Therefore, each string is indexed in the B-tree according
to the z-order value of its q-gram counting vector. Formally, the gram
counting order φgc for string s is defined as

φgc(s) = zorder(s′). (8.5)

The property of comparability is straightforwardly satisfied since
it only requires to compare the binary representations of the z-order
values on vectors s′ and r′ to verify their order in the B-tree.

Next, we analyze the property of lower bounding. For a string inter-
val [si,sj ] in z-order representation, a lower bound and upper bound
on the number of q-grams in each bucket for all strings in the inter-
val can be derived. This is easy to see with an example. Let si and sj

have binary z-order values ‘11011011’ and ‘11011110’, respectively. Any
string between them must have the prefix ‘11011’, while the remaining
bits can be either 0 or 1. In Figure 8.2 it can be seen that some accu-
rate estimation on the bucket values can be recovered if the common
prefix is long enough. Specifically, the first bucket B1 is clearly 3, since
both bits are deterministically decided. For the rest of the buckets, the
set of possible values can also be calculated with the confirmed prefix
bits.

Assume that for a given string interval [si,sj ] the lower and upper
bound values on bucket B� are Bl

� and Bu
� (for 1 ≤ � ≤ L). After trans-

forming the query v to vector v′ in gram counting order, we apply
Equation (8.4) using the lower and upper bound values of the buckets,
to reach some new lower bound on the edit distance from v to any
string contained in the interval. The pairwise lower bounding property
can be achieved similarly by retrieving the bound pairs (Bl

�(s),B
u
� (s))

and (Bl
�(r),B

u
� (r)) for [sl,su] and [rl, ru], respectively.

1 1 1 1 ? ?0 ?

1 ? ?? 111 0

}3{ }2,3{}0,1{}2,3{

Fig. 8.2 Example of bounding the values in buckets on z-order.
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The gram counting order has the length bounding property as well.
Given vector s′ for string s in gram counting order, the length of s is∑L

�=1 s′[�] − q + 1, by the definition of q-grams. This implies that the
length of the strings in string interval [si,sj ] is bounded in the interval
[
∑L

�=1 Bl
� − q + 1,

∑L
�=1 Bu

� − q + 1]. This allows us to correctly answer
queries based on normalized, as well as standard edit distance.

8.3.2.3 Gram location order

In gram counting order the positional information of the q-grams is
simply discarded. Another string order, called Gram Location Order,
exploits the positions of the q-grams to improve edit distance based
pruning. The gram location order satisfies comparability, lower bound-
ing, and pairwise lower bounding, and hence supports all types of
queries but not normalized edit distance.

To conduct the transformation, the q-grams are extracted along
with their actual positions in the string. By hashing the q-grams to inte-
gers, each positional q-gram is represented by a vector of two entries,
the hash value of the q-gram and the position of the q-gram. We use a
hash value instead of the idf to avoid the updating issues related with
computing idfs when strings are added or deleted from the B-tree.

To avoid storing large sets of hash-value/position pairs in the inter-
mediate B-tree nodes, we sort the set elements based on the increas-
ing two-dimensional z-order value of each element (i.e., the z-order
value of pair (hs,ps), where hs is the hash value of the q-gram). Then,
for each set we preserve only the first L elements in the z-order, and
finally sort the elements in increasing order of positions. In the rest
we use s′ to denote the top-L positional q-grams for string s, i.e.,
s′ = {(hs

1,p
s
1), . . . ,(h

s
L,ps

L)}, in which hs
i is the q-gram hash value, ps

i

is the corresponding position of the q-gram in the original string s, and
ps
1 ≤ ·· · ≤ ps

L.
Simply stated, we preserve only a pseudo-random subset of posi-

tional q-grams per string, and approximately compare strings based
on these subsets only (the pseudo-random ordering is imposed by the
hash function h and the z-order used for each vector component, which
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is used in order to prune both based on the q-gram hashes and the
positions simultaneously).

The mapping function of gram location order is formally defined as
the dictionary order on the positional q-gram set:

φgl(s) = φd(s′). (8.6)

After transforming every string to the top-L positional q-gram sets,
the property of comparability is guaranteed due to the property of
dictionary order. In the following, we analyze the property of lower
bounding and pairwise lower bounding.

Similar to dictionary order, given a string interval [si,sj ] in gram
location order, all strings in this interval share a common prefix
LCP (s′

i,s
′
j) of positional q-grams. If a query string v is also represented

by a positional q-gram set v′, the lower bound on the edit distance from
v to any string s ∈ [si,sj ] can be estimated by counting the number of
mismatched positional q-grams between v′ and LCP (s′

i,s
′
j). For that

purpose we can use the mismatch filter condition from Lemma 8.4.

Definition 8.2(Positional Mismatch). Given edit distance thresh-
old θ and two positional q-gram sets v′ and s′, a positional q-gram
(hv

i ,p
v
i ) ∈ v′ incurs a mismatch if either holds: 1. For all x, no (hs

x,ps
x) ∈

s′ exists s.t. hs
x = hv

i and |ps
x − pv

i | ≤ θ; 2. No mismatching (hv
j ,p

v
j ) has

been found already, s.t. pv
i − pv

j ≤ θ for any pv
j < pv

i .

The first condition checks for potential matches between the same
q-grams in v and s within distance θ. The second condition checks
whether there exists a mismatching q-gram preceding the current q-
gram within distance θ from the position of the current q-gram. If such
a mismatch exists, then it might be possible, in a best case scenario,
to correct both q-grams with one edit operation simultaneously (since
they overlap), and thus we cannot count both q-grams as mismatches.
Note that the definition above assumes that each string is long enough
to contain enough positional q-grams. It is easy to modify the definition
in case that the number of q-grams is not large enough. We can state
the following lemma.
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Lemma 8.6. Given a query string v and a string interval [si,sj ], the
edit distance between v and any string s ∈ [si,sj ] is lower bounded by
the number of mismatches from v′ to LCP (s′

i,s
′
j).

To get a tighter lower bound on the edit distance estimation we
can also reverse the process by counting the mismatched positional q-
grams from LCP (s′

i,s
′
j) to v′. After counting the mismatches on both

directions, the larger one will be returned as the lower bound value. The
algorithm takes linear time with respect to the string lengths, since all
positional q-grams are sorted on positions.

On the property of pairwise lower bounding, similar techniques can
be applied by constructing the longest common prefix for both string
intervals [sl,su] and [rl, ru]. Again, the number of mismatches from both
positional q-gram sets is counted, the larger of which is the estimated
lower bound.

8.4 Discussion and Related Issues

The state-of-the-art filtering algorithm for edit distance computation
is the mismatch filter. It can prune strings both based on the loca-
tions of matching q-grams and mismatching q-grams, which leads to
tighter pruning than all other approaches. Filtering algorithms cannot
be adapted to evaluate either weighted or normalized edit distance. For
selection queries and datasets that fit in maim memory, the trie based
algorithm is a very efficient approach, especially for computing edit
distance when query strings are given incrementally, as is the case with
interactive applications, since they reuse computation performed in pre-
vious steps. Trie based algorithms can be used to evaluate weighted edit
distance. The B-tree algorithms are the best alternative when consid-
ering incremental updates. They also have the benefit that the same
B-tree structure can be used to answer all types of queries (selections,
joins, all-match, and top-k queries), without the need to specify a min-
imum query threshold a priori. They are also the most efficient for long
strings and large edit distance thresholds. The performance of all other
algorithms deteriorates significantly for large thresholds. Finally, the
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B-tree algorithms can be used to evaluate normalized edit distance,
but not weighted edit distance.

8.5 Related Work

Edit distance based queries have been studied in the past in litera-
ture related to the approximate dictionary lookup problem. Dictionary
lookup simply returns a yes or no answer, if there exists a dictio-
nary string within edit distance θ from a query string. Minsky and
Papert [53] originally formulated the dictionary lookup for Hamming
distance. Yao and Yao [77] presented a solution for Hamming distance
θ = 1. Brodal and Gasieniec [14] presented an improved algorithm in
terms of space and query time. Manber and Wu [51] proposed an algo-
rithm for edit distance with threshold θ = 1. The algorithm generates
all possible strings within edit distance one from each string in the
dataset and indexes those strings using Bloom filters. The index can
then identify whether there exists a string within edit distance one
from any query string. An improved solution for edit distance one was
given by Brodal and Venkatesh [13]. Arslan and Eğecioğlu [7] pre-
sented a novel algorithm based on tries and arbitrary edit distance
thresholds.

The dictionary lookup problem is fundamentally easier than the
approximate dictionary match problem, and both are easier than the
approximate text match problem, which has received a lot of attention
in the past. Most solutions for the approximate text match problem can
be used to solve the approximate dictionary match problem. Neverthe-
less, due to its simplicity, the dictionary match problem is amenable to
certain optimizations and simplifications that result in faster indexes
and filtering techniques in practice. A survey of related literature on the
offline text matching problem was conducted by Chan et al. [16]. A sur-
vey of the online text matching problem was conducted by Navarro [54].
A comprehensive exposition of all algorithms for online approximate
string matching was conducted by Stephen [62].

The q-gram intersection filter for edit distance was first proposed
by Jokinen and Ukkonen [39]. In the same paper the authors gave the
first algorithm that used q-gram inverted lists to compute edit distance.
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Gravano et al. [31] used similar reasoning to solve the dictionary match
problem using standard relational database technology, by representing
token lists as relational tables and expressing the list merging process
as join queries. Efficient list merging algorithms based on the multiway
merge strategy, independent of a DBMS, were proposed by Sarawagi
and Kirpal [60]. Li et al. [48] proposed an optimization of the multiway
merge algorithm for edit distance.

The idea of filtering techniques in information retrieval dates at least
as far back as the 1970s [36]. The idea of filtration for approximate
text matching using Hamming distance was first proposed by Karp
and Rabin [40]. Owolabi and McGregor [57] were the first to make the
observation that similar strings should have at least some substring of
sufficient length in common. A filtering algorithm for the text matching
problem for Hamming based on sampling the text was proposed by
Grossi and Luccio [32], and later improved by Pevzner and Waterman
[58]. A sampling based solution for edit distance was proposed by Chang
and Lawler [17] and later simplified by Takaoka [64] using q-grams. Two
filtering algorithms for edit distance based on q-grams were proposed
by Ukkonen [67]. The location information of q-grams was first used by
Sutinen and Tarhio [63] in combination with a partitioning strategy.
Chang and Lawler [17] used the idea of partitioning the strings using
the pigeonhole principle. The same partitioning strategy was also used
by Wu and Manber [72]. This idea was later extended to the partenum
signature by Arasu et al. [6]. Sarawagi and Kirpal [60] gave the first
algorithm based on using the prefix filter principle. The prefix filter
was later formalized by Chaudhuri et al. [19]. The mismatch filter was
proposed by Xiao et al. [73].

Jokinen and Ukkonen [39] were the first to present an algorithm
based on suffix automatons for the text matching problem using edit
distance. An algorithm for the text matching problem using a suffix trie
and edit distance was proposed by Ukkonen [68]. An improvement on
this algorithm was proposed by Cobbs [22]. Cole et al. [23] presented an
even faster algorithm. Their algorithm uses a variety of auxiliary data
structures (e.g., compressed tries for subtrees of the suffix tree and a
specialized index for the query) to reduce the number of children nodes
that need to be traversed at every level of the compressed trie. This



394 Algorithms for Edit Based Similarity

algorithm was later improved by Chan et al. [15]. A cache conscious
extension of the same algorithm for external memory applications was
proposed by Hon et al. [37].

The detailed expansion based trie algorithm for incrementally com-
puting the edit distance of every prefix of a query string was indepen-
dently proposed by Ji et al. [38] and Chaudhuri and Kaushik [20]. These
algorithms were tailored specifically for computing edit distance as a
user is typing a query one letter at a time. The main difference from
the dictionary reporting problem is that the whole query string is not
known in advance, hence certain optimizations based on knowing the
query are not applicable. In addition, these algorithms reuse previous
computation to efficiently retrieve the new answers, after a new letter
is typed. Conceptually the two algorithms are the same. In practice
they differ in the order that nodes are added in the active nodes list.
Chaudhuri and Kaushik [20] need to process every node before all its
children in order to maintain correctness (which necessitates maintain-
ing a queue, resulting in some additional space). Ji et al. [38] only need
to maintain a hash table, since the order in which nodes are processed
is not important. The B-tree based algorithms were proposed by Zhang
et al. [78].



9
Conclusion

Approximate string matching is a fundamental operation in text data
management. This work presented algorithms for selection and join
queries using set based and edit based similarity measures and arbitrary
token weighing schemes. There exists a large body of work in text data
management related to approximate string processing that was not cov-
ered here. An important aspect of approximate string matching is to
efficiently incorporate domain knowledge into the search mechanism.
Domain knowledge can significantly affect search results and improve
query relevance in a variety of settings. Specifically, the context of a
query is of key importance in the similarity between strings. For exam-
ple, previous work has recognized the significance of synonyms in many
text search applications [4, 5]. In most cases, synonyms are context
dependent. For example, ‘Avenue of the Americas’ and ‘6th Avenue’
are synonyms only in the context of New York City. Other types of
domain knowledge can help index and query the data more efficiently.
For example, the inherent hierarchical structure of mailing addresses
is an important factor for indexing such data. Given that the vast
majority of address based queries focus on particular cities or states, a
simple partitioning of the data (with possible spatial overlapping) on
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a per city or state level can improve querying efficiency substantially.
Also, such information can help decide partitioning strategies for dis-
tributed applications (e.g., in a map-reduce setting). Clearly, incorpo-
rating domain knowledge in string similarity searching is a non-trivial
task. Furthermore, a large number of applications depend heavily on
efficient solutions to the approximate string matching problem as a
primitive operation. Examples include entity resolution, record linkage,
data cleaning, and deduplication [12, 21, 28, 27] data integration [35],
text analytics and more. Every application has unique properties and
presents idiosyncrasies that necessitate the development of specialized
solutions. It is our belief that approximate string matching will remain
of fundamental importance as new application domains and problems
in text data management arise, but a solid foundation will guarantee
robust solutions in the future.
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