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Abstract— Spatiotemporal objects i.e., objects which change
their position and/or extent over time, appear in many appli-
cations. This paper addresses the problem of indexing large
volumes of such data. We consider general object movements
and extent changes. We further concentrate on “snapshot” as well
as small “interval” historical queries on the gathered data. The
obvious approach that approximates spatiotemporal objects with
MBRs and uses a traditional multidimensional access method
to index them is inefficient. Objects that “live” for long time
intervals have large MBRs which introduce a lot of empty space.
Clustering long intervals has been dealt in temporal databases
by the use of partially persistent indices. What differentiates this
problem from traditional temporal indexing is that objects are
allowed to move/change during their lifetime. Better methods are
thus needed to approximate general spatiotemporal objects. One
obvious solution is to introduce artificial splits: the lifetime of
a long-lived object is split into smaller consecutive pieces. This
decreases the empty space but increases the number of indexed
MBRs. We first introduce two algorithms for splitting a given
spatiotemporal object. Then, given an upper bound on the total
number of possible splits, we present three algorithms that decide
how the splits should be distributed among the objects so that
the total empty space is minimized.

I. I NTRODUCTION

There are many applications that create spatiotemporal data.
Examples include transportation (cars moving in the highway
system), satellite and earth change data (evolution of forest
boundaries), planetary movements, etc. The common charac-
teristic is that spatiotemporal objects move and/or change their
extent over time.

Recent works that address indexing problems in a spa-
tiotemporal environment include [28], [11], [10], [23], [29],
[1], [20], [21], [12], [25]. Two variations of the problem
are examined: approaches that optimize queries about the
future positions of spatiotemporal objects ([11], [23], [1],
[21], [22]) and those that optimize historical queries ([28],
[29], [10], [17], [20], [21], [12], [25]), i.e., queries about past
states of the spatiotemporal evolution. Here we concentrate
on historical queries, so for brevity the term “historical” is
omitted. Furthermore, we assume the “off-line” version of the
problem, that is, all data from the spatiotemporal evolution has
already been gathered and the purpose is to index it efficiently.

For simplicity we assume that objects move/change on a
2-dimensional space that evolves over time; the extension
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to a 3-dimensional space is straightforward. An example of
such a spatiotemporal evolution appears in figure 1. Thex
and y axes represent the 2-dimensional space while thet
axis corresponds to the time dimension. For the rest of this
discussiontime is assumed to be discrete, described by a
succession of increasing integers. At timet1 objectso1 (which
is a point) ando2 (which is a 2D region) are inserted. At time
t2, objecto3 is inserted whileo1 moves to a new position and
o2 shrinks. Objecto1 moves again at timet5; o2 continues to
shrink and disappears at timet5. Based on its behavior in the
spatiotemporal evolution, each object is assigned a record with
a “lifetime” interval [ti, tj) created by the time instants when
the object was inserted and deleted (if ever). For example,
the lifetime of o2 is [t1, t5). During its lifetime, an object is
termedalive.

An important decision for the index design is the class of
queries that the index optimizes. In this paper we are interested
in optimizing topological snapshot queries of the form: “find
all objects that appear in areaS during time t”. That is, the
user is typically interested on what happened at a given time
instant (or even for small time periods around it). An example
snapshot query is illustrated in figure 1: “find all objects inside
areaS at time t3”; only object o1 satisfies this query.

One approach for indexing spatiotemporal objects is to
consider time as another (spatial) dimension and use a 3-
dimensional spatial access method (like an R-Tree [8] or its
variants [3]). Each object is represented as a 3-dimensional
rectangle whose “height” corresponds to the object’s lifetime
interval, while the rectangle “base” corresponds to the largest
2-dimensional minimum bounding region (MBR) that the
object obtained during its lifetime. While simple to implement,
this approach does not take advantage of the specific properties
of the time dimension. First, it introduces a lot of empty space.
Second, objects that remain unchanged for many time instants
will have long lifetimes and thus, they will be stored as long
rectangles. A long-lived rectangle determines the length of the
time range associated with the index node (page) in which it
resides. This creates node overlapping and leads to decreased
query performance ([13], [14], [24], [25], [28], [12]). Better
interval clustering can be achieved by using “packed” R-Trees
(like the Hilbert R-Tree [9] or the STR-Tree [15]); another idea
is to perform interval fragmentation using the Segment R-Tree
[13]. However, the query performance is not greatly improved
[12].
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Fig. 1. An example of spatiotemporal object evolution.

Another approach is to exploit the monotonicity of the
temporal dimension, and transform a 2-dimensional spatial
access method to become partially persistent ([29], [17], [10],
[12], [25]). A partially persistent structure “logically” stores
all its past states and allows updates only to its most current
state ([6], [16], [2], [30], [14], [24]). A historical query about
time t is directed to the state the structure had at timet.
Hence, answering such a query is proportional to the number
of alive objects the structure contains at timet. That is,
it behaves as if an “ephemeral” structure was present for
time t, indexing the alive objects att. Two ways have been
proposed to achieve partial persistence: the overlapping [4]
and multi-version approaches [6]. In the overlapping approach
([17], [29]), a 2-dimensional index is conceptually maintained
for each time instant. Since consecutive trees do not differ
much, common (overlapping) branches are shared between
the trees. While easy to implement, overlapping creates a
logarithmic overhead on the index storage requirements [24].
Conceptually, the multi-version approach ([16], [2], [30], [14],
[25]) also maintains a 2-dimensional index per time instant,
but the overall storage used is linear to the number of changes
in the evolution. In the rest we use a partially persistent R-
Tree (PPR-Tree [14], [25]). A short description of a PPR-Tree
appears in section II-B.

Our approach for improving query performance is to reduce
the empty space introduced by approximating spatiotemporal
objects by their MBRs. This can be accomplished by intro-
ducing artificial object updates. Such an update issued at time
t, artificially “deletes” an alive object att and reinserts it at
the same time. The net effect is that the original object is
represented by two records, one with lifetime that ends att
and one with lifetime that starts att. Consider for example a
spatiotemporal object created by the linear movement shown

in figure 2. Here, the 2-dimensional rectangle moved linearly,
starting att1 from the lower left part of the(x, y) plane and
reaching the upper right part att2. The original MBR is shown,
as well. However, if this object is split (say, at the middle
of its lifetime) the empty space is reduced since two smaller
MBRs are now used (see figure 3 where the(x, t) plane is
represented).

Clearly, an artificial split reduces empty space and thus,
we would expect that query performance improves. However,
it is not clear if the 3D R-Tree query performance will
improve by these splits. An intuitive explanation is based on
Pagel’s query cost formula [19]. This formula states that the
query performance of any bounding box based index structure
depends on the total (spatial) volume, the total surface and the
total number of data nodes. Using the artificial splits, we try to
decrease the total volume of the data nodes (by decreasing the
size of the objects themselves). On the other hand, the total
number of indexed objects increases. In contrast, for the PPR-
Tree the number of alive records (i.e., the number of indexed
records) at any time instant remains the same while the empty
space and the total volume (i.e., on average the total surface of
all “ephemeral” 2-dimensional R-Trees) is reduced. Therefore,
it is expected that the PPR-Tree performance for snapshot and
small interval queries will be improved.

In [12] we addressed the problem of indexing spatiotempo-
ral objects that move or change extent usinglinear functions of
time. Assuming we are given a number of possible splits that
are proportional to the number of spatiotemporal objects (i.e.,
the overall storage used remains linear) a greedy algorithm
was presented that minimizes the overall empty space. In
particular, the algorithm decides (i) which objects to split
and (ii) how the splits are distributed among objects. The
algorithm’s optimality is based on a specialmonotonicity
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Fig. 2. A spatiotemporal object in linear motion.
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Fig. 3. An example of splitting an object once.

property which holds for linearly moving/changing objects:
Claim 1: Given a spatiotemporal object that follows a linear

trajectory and a number of splits, the gain in empty space de-
creases as the number of splits applied to the object increases.
Equivalently, the first few splits will yield big gain in empty
space, while the more we split the less gain is obtained.

In this paper we address the more difficult problem where
objects are allowed to move/change with general motions over
time. Unfortunately, in this case the monotonicity property
does not always hold. An example is shown in figure 4. One
split will give much less gain in empty space than two.

Hence, new approaches are needed. We first present a
dynamic programming algorithm and a heuristic for decid-
ing how to apply a given number of splits on a general
spatiotemporal object to maximize the gain in empty space.
Furthermore, assuming that there is a predetermined total num-
ber of splits, we provide a dynamic programming algorithm
for optimally distributing those splits among a collection of
general spatiotemporal objects, while minimizing the total
volume. The difficulty lies in the fact that the number of splits
might not be enough to split every object in the collection,
so an optimization criterion has to be considered. Finally,
we describe two greedy algorithms that give close to optimal
results, with very large gain in running time. While by using
more splits the gain is increased, eventually the increase will
not be substantial. A related problem is how to decide on the
appropriate number of artificial splits. Assuming that a model
is available for predicting the query cost of the index method
used ([27], [26]), the number of splits can be easily decided.

To show the merits of our approach the collection of
objects (including objects created by the artificial splits) are
indexed using a PPR-Tree and a 3-dimensional R*-Tree [3].
Our experimental results show that the PPR-Tree consistently
outperforms the R*-Tree for snapshot as well as small interval
queries.

We note that some special cases of indexing general spa-
tiotemporal objects have also been considered in the literature:
(i) when the objects have no spatial extents (moving points)
[20], [21], and (ii) when the motion of each object can
be represented as a set of linear functions (piecewise linear
trajectories [7], [12]). For the case that points move with linear
functions of time, extensions to the R-Tree have been proposed
(Parametric R-Tree [5] and the PSI approach in [21]). The
problem examined here is however more complex as objects

are allowed to move/change with a general motion over time.
The rest of the paper is organized as follows. Section II

formalizes the notion of general movements/changes and
provides background on the PPR-Tree. Section III presents
the proposed algorithms. Section IV discusses how to use
analytical models to find a good number of splits for a given
dataset. Section V contains experimental results. Related work
is given in section VI. Finally, section VII concludes the paper.

II. PRELIMINARIES

A. Formal Notion of General Movements

Consider a set ofN spatiotemporal objects that move inde-
pendently on a plane. Suppose that the objects move/change
with linear functions of time:x = Fx(t), y = Fy(t),
t ∈ [ti, tj). Then the representation of a spatiotem-
poral object O can be defined as a set of tuples:
O = {([ts, tj), Fx1(t), Fy1(t)), . . . , ([tk, te), Fxn(t), Fyn(t))}
where ts is the object creation time,te is the object dele-
tion time, tj , . . . , tk are the intermediate time instants when
the movement of the object changes characteristics and
Fx1 , . . . , Fxn , Fy1 , . . . , Fyn are the corresponding functions.
In the general case, objects can move arbitrarily towards
any direction. Representing an object’s movement by the
collection of locations for every time instant is not efficient
in terms of space. It cannot be approximated very well with
combinations of linear functions either, since the number of
segments required cannot be bounded. A better approach is
to use combinations of polynomial functions. An example of
a point moving on the(x, t) plane with the corresponding
functions describing its movement is shown in figure 5. For
two dimensional movements every tuple would contain two
functions, the first giving a movement on the x-axis and the
second on the y-axis. This results to an object following
a trajectory which is a combination of both functions. An
alteration in the object’s shape could be described in the same
way. An example is shown in figure 6 where the object follows
a general movement, keeps constant extent along the x-axis
and changes extent along the y-axis.

By restricting the degree of the polynomials up to a maximal
value, most common movements can be approximated or even
represented exactly by using only a few tuples. As the number
of tuples increases, more complicated movements may be
represented and better approximations can be obtained. This
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Fig. 6. A moving object that follows a general trajectory while changing
shape.

approach is storage efficient, since few tuples are required for
the representation of general movements/changes. It further
guarantees that the MBR of any movement can be found
easily by computing the minimum and maximum of the
appropriate functions for all instants in a time interval. In
this paper we focus in general movements/changes of objects
and our algorithms are designed accordingly. We use, though,
polynomial functions for generating moving objects for our
experiments.

B. The Partially Persistent R-Tree

Consider a spatiotemporal evolution that starts at timet1
and assume that a 2-dimensional R-Tree indexes the object
shape and locations at timet1. As the evolution advances, the
2-dimensional R-Tree also evolves, by applying the evolution
updates (object additions/deletions) as they occur. Storing this
R-Tree evolution corresponds to making the R-Tree partially
persistent. The following discussion is based on [14]. While
conceptually the partially persistent R-Tree (PPR-Tree) records
the evolution of an ephemeral R-Tree, it does not physically
store snapshots of all the states in the ephemeral R-Tree
evolution. Instead, it records the evolution updates efficiently
so that the storage remains linear to the number of changes,
while still providing fast query time.

The PPR-Tree is actually a directed acyclic graph of nodes
(a node corresponds to a disk page). Moreover, it has a number
of root nodes, each of which is responsible for recording
a consecutive part of the ephemeral R-Tree evolution. Data
records in the leaf nodes of a PPR-Tree maintain the temporal
evolution of the ephemeral R-Tree data objects. Each data
record is thus extended to include the two lifetime fields:
insertion-timeand deletion-time. Similarly, index records in

the directory nodes of a PPR-Tree maintain the evolution of the
corresponding index records of the ephemeral R-Tree and are
also augmented withinsertion-timeanddeletion-timefields.

An index or data record isalive for all time instants during
its lifetime interval. With the exception of root nodes, a leaf
or a directory node is calledalive for all time instants that
it contains at leastD alive records (D < B, where B is
the maximum node capacity). When the number of alive
records falls belowD the node is split and its remaining alive
records are copied to another node. This requirement enables
clustering the objects that are alive at a given time instant in
a small number of nodes (pages), which in turn will minimize
the query I/O. Searching the PPR-Tree takes into account the
lifetime intervals of the index and the data records visited.
Consider answering a query about regionS and timet. First,
the root which is alive att is found. This is equivalent to
accessing the ephemeral R-Tree which indexes timet. Second,
the objects intersectingS are found by searching this tree in a
top-down fashion as in a regular R-Tree. The lifetime interval
of every record traversed should contain timet, and its MBR
should intersect regionS.

III. R EPRESENTATION OFSPATIOTEMPORAL OBJECTS

Consider a spatiotemporal objectO that moved from its
initial position at time instantt0 to a final position at time
tn with a general movement pattern. We can represent this
object using its bounding box in space and time. However,
this creates large empty space and overlap among the index
nodes (we assume that an index like a 3-dimensional R-Tree
or a PPR-Tree is used). A better approach is to represent the
object using multiple boxes. That way a better approximation
is obtained and the empty space is reduced. The object is split
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Fig. 7. An 1-dimensional example of representing an object with one and
three MBRs.

into smaller consecutive objects and each one is approximated
with a smaller bounding box (see figure 7). Note that we
consider splitting alongthe time axis only, since the time
dimension is the main reason of the increased empty space
and overlap.

Next, we present methods for splitting objects in spatiotem-
poral datasets in order to decrease the overall empty space and
increase the query performance. We break the problem into
two sub-problems:

A Given an object and an upper limit in the number of
splits we have to find how to split the object such that
the maximum possible gain in empty space is obtained.

B Given a collection of objects and a predetermined num-
ber of splits we try to distribute the splits among all
objects in order to optimize the query performance of
the index.

A. Splitting One Object

Consider a spatiotemporal objectO with lifetime [t0, tn).
Assume that we want to split the object intok consecutive
objects in a way that minimizes the total volume of its
representation. As we discussed above, we use splits in the
form of artificial updates. It would be logical to assume that
we only need to consider splitting an object at the points
where the movement changes its characteristics (in case that
the movement is represented by a combination of functions for
example). This approach does not give optimal gain results in
most cases, as could be shown with a counter example (see
figure 7 for an intuition behind the problem).

1) An Optimal Algorithm (DPSplit):Let Vl[0, i] be the
volume of the MBRs corresponding to the part of the spa-
tiotemporal object betweent0 and ti after using l optimal
splits. Then, the following holds:

Vl[0, i] = min
0≤j<i

{Vl−1[0, j] + V [j, i]}

whereV [j, i] is the volume of the MBR that contains the part
of the spatiotemporal object betweentj and ti, without any
splits. The formula states that in order to find the optimal
solution for splitting the object betweent0 and ti, we have
to consider all intermediate time instants and combine the
previous solutions. Using the above formula we obtain a

Input: A spatiotemporal objectO as a sequence ofn
spatial objects, one at each time instant.
Output: A set of MBRs that coverO.

1) For 0 ≤ i < n compute the volume of the MBR
for mergingOi with Oi+1. Store the results in a
priority queue.

2) Repeatn times: Use the priority queue to merge
the pair of consecutive MBRs that give the small-
est increase in volume. Update the priority queue
with the new merged MBR.

Fig. 8. The greedy heuristic (MergeSplit).

dynamic programming algorithm that computes the optimal
positions for thek splits and the total volume after these splits.
This is achieved by computing the valueVk[0, n].

Theorem 1:Splitting one object optimally usingk splits can
be done inO(n2k), where the lifetime of the object is[t0, tn).

Proof: We have to compute thenk values of the array
Vl[0, i], 0 ≤ l < k, 0 ≤ i < n. Each value in the array
can be found by computing the minimum ofn values using
the formula above. The volumeV [j, i] of the object between
positionsj and i can be precomputed for every runi, for all
values ofj, usingO(n) space andO(n) time and thus does
not affect the time complexity of the algorithm.

2) An Approximate Algorithm (MergeSplit):The dynamic
programming algorithm is quadratic to the lifetime of the
object. For objects that live for long time periods the above
algorithm is not very efficient. A faster algorithm is based on
a greedy approach. The idea is to start withn different boxes,
one for each time instant and merge the boxes in a greedy way
(figure 8). The running time of the algorithm isO(n lg n).
To improve the running time we can merge all consecutive
boxes that give a small increase in volume. Then, we can run
the greedy algorithm starting with fewer boxes. This greedy
algorithm gives in general sub-optimal solutions.

B. Splitting a Collection of Objects

In this subsection we discuss methods for distributing a
number of splitsK among a collection ofN spatiotemporal
objects. While using more splits to approximate the objects
improves query performance by reducing the empty space,
every split corresponds to a new record (the new MBR) and
thus increases the storage requirements. Hence, if we are given
a total number of splitsK (which may correspond to an upper
limit on the disk space) and a set of spatiotemporal objects,
we want to decide which objects to split and how many splits
should be allocated to each one of these objects.

1) An Optimal Algorithm: Assuming an ordering on the
spatiotemporal objects (each object gets a number between1
andN ), let TVl[i] be the minimum total volume occupied by
the first i objects with optimall splits, andVj [i] be the total
volume for approximating theith object usingj splits (e.g.,
with j + 1 boxes.) we observe that:

TVl[i] = min
0≤j≤l

{TVl−j [i− 1] + Vj [i]}
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Input : A set of spatiotemporal objects with cardinality
N .
Output : A near optimal minimum volume required to
approximate all objects withK splits.

1) Find volume change for every object using one
split. Store in a max priority queue.

2) For K iterations: Remove the top element of
the queue. Assign the split to the corresponding
object. Calculate the volume change if one more
split was used on the same object. Reinsert the
object in the queue.

Fig. 9. Greedy Algorithm.

We use the above formula to find the total volume for each
number of splits. A dynamic programming algorithm can be
used with running timeO(NK2). To compute the optimal
solution first we need the optimal splits for each object, which
can be found by using the dynamic programming algorithm
presented in section III-A.1. Hence, the following theorem
holds:

Theorem 2:Optimally distributingK splits amongN ob-
jects can be done inO(NK2).

2) The Greedy Algorithm:The dynamic programming al-
gorithm described above is quadratic to the number of splits.
That makes the algorithm impractical for many real life appli-
cations. Therefore, it is intuitive to look for an approximate
solution. The simplest form of such a solution would be to
use a greedy strategy: Given the split distribution so far, find
the object that if split one more time (or for the first time) it
will yield the maximum possible global volume reduction, and
assign the split to that object. Continue in the same way until
there are no more available splits. The algorithm is shown in
figure 9. Assuming the best splits are known in advance for
all objects, the complexity of the main loop isO(K lg N) and
the complexity of the algorithm isO(K lg N + N lg N).

3) The Look-Ahead Greedy Algorithm (LAGreedy):The
result of the previous algorithm will not be optimal in the
general case. One reason is the following. Consider an object
that if split once gives a very small improvement in empty
space but if split twice most of its empty space is removed
(see figure 4 for an example). Using the greedy algorithm
it is probable that this object will not be given the chance
to be allocated any splits, because the first split is poor and
other objects with better initial splits, will be chosen before
it. However, if we allow the algorithm to consider more than
one splits for every object at each step, the possibility for
this object to be chosen for splitting is much higher. This
observation gives an intuition about how the greedy strategy
could be improved to give a better result, closer to the optimal.
At every step, instead of finding the object that yields the
largest gain by performing one more split, we could look ahead
and find objects that result in even larger gain if two, three or
more splits are assigned all at once.

For example, the look-ahead-2 algorithm works as follows
(figure 10). First, all splits are allocated one by one in a greedy

Input : A set of spatiotemporal objects with cardinality
N .
Output : A near optimal minimum volume required to
approximate all objects withK splits.

1) Allocate splits by calling theGreedy Algorithm.
PQla1 is a min priority queue that sorts objects
according to the gain given by their last split.
PQla2 is a max priority queue that sorts objects
according to the gain given if two extra splits are
used per object.

2) Remove top two elements fromPQla1, let
O1, O2. Remove top element fromPQla2, let O3.
Make sure thatO1 6= O2 6= O3. If the gain for
O3 is larger than the combined gain forO1 and
O2, redistribute the splits and update the priority
queues.

3) Repeat last step until there is no change in the
distribution of splits.

Fig. 10. LAGreedy Algorithm.

fashion, as before. When the greedy assignment is complete,
one new priority queuePQla1 is created, which sorts the
objects by the gain offered by the last split allocated to them
(if an object is splitk times, sort the object according to the
volume gain yielded by thekth split). The top of the queue
is the minimum gain. A second priority queuePQla2 is also
needed, which sorts the objects by the volume that would be
gained if two more splits were allocated to each one (if an
object is splitk times, sort the object according to what the
volume gain would be if it was splitk + 2 times). The top of
the queue is the maximum gain. If the gain of the top element
of PQla2 is bigger than the sum of the gains of the two top
elements ofPQla1 the splits are reassigned accordingly, the
queues are updated and the same procedure continues until
there is no more change in the distribution of splits. In essence,
the algorithm tries to find two objects for which the combined
gain from their last splits is less than the gain obtained if a
different, third object, is split two times extra (obviously an
object not conforming to the monotonicity property).

The algorithm has the same worst case complexity as the
greedy approach. However, experimental results show that it
achieves much better results for the small time penalty it
entails.

IV. F INDING THE NUMBER OF SPLITS

The real objective of a split distribution algorithm is not
to minimize the total volume itself, but to reduce the cost of
answering a query if a predefined query distribution model is
given. The objective function that should be optimized must
represent this cost. Therefore, we need to define a function
that is evaluated after each split and gives the average number
of I/Os for answering a query. This function will help us find
the number of splits that gives the best query results.

The splitting algorithms discussed in the previous section
take as input the total number of splits and generate a new
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dataset with smaller total volume. However, it is important to
choose a number of splits that gives a good trade-off between
query time and space overhead. The choice of a good value for
this parameter affects the performance of the index structure.
In this section, we give an overview of two methods for
automatically computing a good value for this parameter.

The first method is based on using analytical models to
predict the performance of the index. For a given number
of splits, compute a distribution of splits and estimate some
statistics about the generated dataset after splitting. Use the
statistics as an input to the analytical model of the index
that will be used and get a prediction on the number of disk
accesses required to answer a random query from a query
distribution. Repeat for a different split distribution. Thus,
instead of trying to minimize the total volume, try to minimize
the average query cost which is the ultimate goal!

Another way to find the best number of splits among a set
of possible values is by using sampling. For each number of
splits, an index is created and a set of representatives queries
are evaluated on each index. The number that gives the best
query performance is then chosen. However, instead of using
the full dataset, it is possible to use a small sample and create
the indices over this sample. The number of splits should be
normalized to the full dataset.

V. EXPERIMENTAL RESULTS

To test our algorithms we created four random datasets (uni-
form) of various sizes with moving rectangles in 2-dimensional
space, and another four datasets with trains moving on a
railway system (skewed). All object trajectories were approx-
imated with MBRs. First, each object is split with the optimal
(DPSplit) algorithm and the merge heuristic (MergeSplit) and
the results are stored. Then, the optimal (Optimal), greedy
(Greedy) and look-ahead-2 greedy (LAGreedy) algorithms are
used to distribute various numbers of splits (from 1% to 150%
of the total number of objects) among the objects; again the
splitting results are stored. In the rest of the section,a% splits
means that we usea

100N total number of splits on a dataset
with N spatiotemporal objects. For comparison purposes we
also generated datasets using the simpler approach of splitting
the objects in a piecewise manner, i.e., at the points in time
where the polynomial representing the movement changes
characteristics, which is the same as representing the move-
ments with piecewise linear functions as in [21]. This method
resulted in a number of splits about 400% of the total number
of objects. Finally, we used the 3-dimensional R*-Tree and
the PPR-Tree to index the resulting data. We decided not to
use any packing algorithms for the R*-Tree, since from our
previous experience, packing does not help substantially with
datasets of moving objects. Packing algorithms tend to cluster
together objects that might be consecutive in order even though
they may correspond to large and small intervals. This leads
to more overlapping and empty space [12]. Details about all
datasets are presented in Table I.

For the moving rectangles time extents from 0 to 999 time
instants. The lifetime of each object is randomly selected
between 1 and 100 time instants. The object movement is

approximated with a random number of polynomials between
1 and 10. The polynomials have randomly generated coeffi-
cients but are either of first or second degree (of course any
type of polynomials could easily be generated). All movements
are normalized in the unit square[0, 1]2. The extents of the
rectangles are randomly selected between 1/1000 and 1/100
of the total space.

For the railway datasets we generated a map containing 22
cities and 51 railways. The map approximates the states of
California and New York with most of the tracks connecting
intra state cities with each other. Few cities belong to different
states in-between and there is a number of tracks connecting
all the states across country. The distances of the cities were
approximated to match reality. The trains are allowed to make
up to 10 stops and travel for as long as 36 hours with a speed
that is randomly selected between 60 and 75 miles per hour.
No train is allowed to go back to the city were it originated
without stopping somewhere else in-between. After all the
parameters of the route have been calculated, a series of linear
functions is generated, describing the trajectories in time. The
railway tracks are considered to be straight lines. For these
datasets also, time extents from 0 to 999 time instants.

For both index structures page capacity was set to 50 entries
and we used a 10 page LRU buffer. In addition, for the PPR-
Tree we set the minimum alive records per node parameter
to Pversion = 0.22, the strong version overflow parameter to
Psvo = 0.8 and the strong version underflow toPsvu = 0.4.
Also, the objects were first sorted by insertion time. For the
R*-Tree objects were inserted in random order, but the time
dimension was scaled down to the unit range first [25]. For the
PPR-Tree the time dimension extent does not matter. To test
the resulting structures we randomly generated four snapshot
and two range query sets with 1000 queries each. Details about
these sets are summarized in Table II. For all experiments
the buffer was reset before the execution of every query. All
experiments where run on an Intel Pentium III 1GHz personal
computer, with 1GB of main memory.

A. Comparison of Single-Object Splitting Algorithms

First, we compare the dynamic programming (DPSplit) and
the greedy (MergeSplit) algorithms for splitting a single object.
In order to test their efficiency, we calculated the best splits
of all objects contained in the random datasets, using as many
splits as necessary and computed the CPU time needed. In
figure 11, time is represented in a logarithmic scale, since
for the large datasets the DPSplit algorithm needed almost
one day to finish splitting the objects. On the other hand,
the MergeSplit algorithm was very fast, requiring from a few
minutes to a few hours. In order to show that the MergeSplit
algorithm produces good splits, we optimally distributed 50%
splits on all random datasets, and calculated the total volume
of the resulting MBRs. The results are shown in figure 12.
Clearly, MergeSplit gives very similar results to DPSplit.

B. Comparison of Split Distribution Algorithms

Next, we evaluate the performance of the Greedy and LA-
Greedy algorithms, in comparison with the optimal dynamic
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TABLE I

RANDOM AND RAILWAY DATASETS .

Random 10k 30k 50k 80k
Total Objects 10000 30000 50000 80000
Objects Per Instant (Avg.) 545.873 642.25 2749.97 4390.54
Total Segments 37179 111774 186539 297413
Object Lifetime (Avg.) 50 50 50 50
Object Extent (%) 0.1%-1% 0.1%-1% 0.1%-1% 0.1%-1%
Railway 10k 30k 50k 80k
Total Objects 10000 30000 50000 80000
Objects Per Instant (Avg.) 190.605 570.7 948.026 1522.78
Total Segments 27678 82792 137011 220996
Object Lifetime (Avg.) 18 18 18 18

TABLE II

SNAPSHOT AND RANGE QUERY SETS.

Snapshot Cardinality Extents (%) Duration
Tiny 1000 0.01-0.1 1
Small 1000 0.1-1 1
Mixed 1000 0.1-5 1
Large 1000 1-5 1
Range Cardinality Extents (%) Duration
Small 1000 0.1-1 1 - 10
Medium 1000 0.1-1 10 - 50

programming approach. We distributed 50% splits on the
random datasets using all three algorithms and calculated the
CPU cost of each approach. The results are shown in figure 13.
Time is represented again in a logarithmic scale, since the
optimal algorithm requires up to a few hours to distribute the
splits for the bigger datasets. On the other hand, the two greedy
approaches are much faster with the LAGreedy algorithm
performing about only 10% slower than the Greedy algorithm,
both requiring from a few seconds to a few minutes. To test
the efficiency of our algorithms we distributed 150% splits
using the LAGreedy algorithm on the random datasets and
indexed the resulting MBRs using the PPR-Tree. Finally, we
queried the resulting structures with the mixed snapshot query
set, recording the average number of disk accesses needed.
The results are shown in figure 14. For all the datasets that
we tried, the LAGreedy algorithm performed as well as the
optimal algorithm, while the Greedy approach was always
inferior.

C. Benefits and Drawbacks of Splitting

In order to show that splitting a dataset is beneficial only
for the partial persistence indexing approach, we distributed a
series of different numbers of splits on all datasets using the
LAGreedy algorithm. Then, we indexed the resulting MBRs
using a 3-dimensional R*-Tree and a PPR-Tree. We queried
the resulting structures using the small range queries and
recorded the average number of disk accesses needed. The
results for the 50k random dataset are shown in figure 15.
Observe that as the number of splits increases the average
number of disk accesses needed decreases substantially for

the PPR-Tree, while there is a negative effect for the R*-
Tree. For completeness, in figure 16 we present the disk space
required by the two structures, for an increasing number of
splits. We can see that the PPR-Tree requires almost twice
as much space as the R*-Tree, which is a reasonable tradeoff
considering the gain in query performance. The LAGreedy
combined with the PPR-Tree achieves an improvement of 30%
in query performance over the best alternative (75 vs 110 I/Os).

D. Comparing Partially Persistent and Straightforward Ap-
proaches

Finally, we performed a number of snapshot and range
queries in order to test how the partially persistent and the R*-
Tree structures react when increasing the number and type of
objects. For the small range queries the R*-Tree is somewhat
better for unsegmented data and 1% up to 5% splits, while
the PPR-Tree becomes much better when the number of splits
increases. In figure 17 we plot the average number of disk
accesses for small range queries and 150% splits for the
PPR-Tree and 1% splits for the R*-Tree, distributed with the
LAGreedy algorithm. We also plot the performance of the R*-
Tree with the piecewise data. It is obvious that the partial
persistence approach is by far superior after splitting. For all
datasets and any number of splits we observed that the PPR-
Tree is consistently better than the R*-Tree approaches for
small, large and mixed snapshot queries. An example is shown
in figure 18 for the mixed snapshot queries. We used the 150%
PPR-Tree, the 1% R*-Tree and the piecewise R*-Tree. The
interesting result here is that the piecewise approach [21] is
much worse than the no splits approach. The benefit from
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Fig. 11. CPU time for object split algorithms using random datasets.

10 20 30 40 50 60 70 80
00

100000

200000

300000

400000

500000

600000

DPSplit MergeSplit

Total number of objects (x1000)

To
ta

l v
olu

m
e

Fig. 12. Total volume for object split algorithms using random datasets.
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Fig. 13. CPU time for split distribution algorithms using random datasets.
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Fig. 14. Mixed snapshot queries using random datasets.
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Fig. 15. Small range queries using the 50k random dataset.
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Fig. 17. Small range queries using random datasets.
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Fig. 18. Mixed snapshot queries using random datasets.
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splitting the spatiotemporal objects ranges from 20% for small
interval queries to more than 50% for snapshot queries. For
the railway datasets we observe that the PPR-Tree is again
superior in all cases. Due to lack of space the figures have
been omitted.

VI. RELATED WORK

Spatiotemporal data management has received increased
interest in the last few years and a number of interesting
articles appeared in this area. As a result, a number of new
index methods for spatiotemporal data have been developed.

In [12] we discuss methods for indexing the history of
spatial objects that move with a linear function of time.
[21] examines indexing moving points that have piecewise
linear trajectories. Two approaches are used, the Native Space
Indexing where a 3-dimensional R-tree is used to index the line
segments of object’s trajectories and the Parametric Space In-
dexing. A similar idea is used in [5]. [20] presents methods to
answer efficiently navigation and trajectory historical queries.
This type of queries, though, are different than the topological
queries examined in this paper. [18] addresses the problem of
approximating spatial objects with small number of z-values,
trying to balance the number of z-values with the extra space
of the approximation.

Methods that can be used to index static spatiotemporal
objects include [25], [17], [29], [5], [28]. These approaches
are based either on the overlapping or on the multi-version
approach for transforming a spatial structure into a partially
persistent one. Another related paper is [7] where general
structures to index spatiotemporal objects are discussed.

VII. C ONCLUSIONS

In this paper we investigated the problem of indexing
spatiotemporal data. We assume that objects move with general
motion patterns and we are interested in answering snapshot
and small range queries. The obvious approach for indexing
spatiotemporal objects is to approximate each object with an
MBR and use a spatial access method. However this approach
is problematic due to extensive empty space and overlap. In
this paper we show how to use artificial splits on a set of
spatiotemporal objects in order to reduce overlap and empty
space and improve query performance. We present algorithms
to find good split positions for a single spatiotemporal object
and methods to distribute a given number of splits between a
collection of objects. Also, we discuss how to find a value for
the number of splits that achieves a good trade-off between
query time and space overhead. Experimental results validate
the efficiency of the proposed methods. The combination
of splitting algorithms and the PPR-Tree can achieve up to
50% better query time than the best previous alternative. An
interesting avenue for future work is addressing the on-line
version of the problem.
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