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Abstract— Spatiotemporal objects i.e., objects which change to a 3-dimensional space is straightforward. An example of
their position and/or extent over time, appear in many appli- such a spatiotemporal evolution appears in figure 1. The
cations. This paper addresses the problem of indexing large and y axes represent the 2-dimensional space while tthe
volumes of such data. We consider general object movements__. - . . .
and extent changes. We further concentrate on “snapshot” as well a_XIS corres_pond_s to the time dlmens_lon. For the rest of this
as small “interval” historical queries on the gathered data. The discussiontime is assumed to be discretdescribed by a
obvious approach that approximates spatiotemporal objects with succession of increasing integers. At tigeobjectso; (which
MBRs and uses a traditional multidimensional access method js a point) and, (which is a 2D region) are inserted. At time
to index them is inefficient. Objects that “live” for long time t5, Objectos is inserted whiler; moves to a new position and

intervals have large MBRs which introduce a lot of empty space. hrinks. Obiech in at ti ) i i
Clustering long intervals has been dealt in temporal databases ©2 SNMNKS. Ubjecb; Moves again a Imé;; oz continues to

by the use of partially persistent indices. What differentiates this Shrink and disappears at time. Based on its behavior in the
problem from traditional temporal indexing is that objects are  spatiotemporal evolution, each object is assigned a record with

allowed to move/change during their lifetime. Better methods are 3 “lifetime” interval [t;,t;) created by the time instants when
thus needed to approximate general spatiotemporal objects. One the object was inserted and deleted (if ever). For example,

obvious solution is to introduce artificial splits: the lifetime of the lifeti fos is [t £-). During its lifeti biect i
a long-lived object is split into smaller consecutive pieces. This 1€ lifetime ofo is [t1,5). During its lifetime, an object is

decreases the empty space but increases the number of indexed€rmedalive.
MBRs. We first introduce two algorithms for splitting a given An important decision for the index design is the class of

spatit?temfporal %?jeCt-l_tThen, given ?rtthIOIOGT bo'l:r?d Otnhtftl% tOFg' queries that the index optimizes. In this paper we are interested
number of possible splIts, we presen ree algoritnms that aecide ; i H H . oufs
how the sglits shoulg be distpributed among gthe objects so that n opt!m|2|ng topologlca! Snapshot'que.rles ?f the fqrm. find
the total empty space is minimized. all opjects .that appear in areéaduring timet”. That is, the '
user is typically interested on what happened at a given time
| INTRODUCTION instant (or even for small time periods around it). An example
' snapshot query is illustrated in figure 1: “find all objects inside
There are many applications that create spatiotemporal dgfga9 at timets”; only objecto; satisfies this query.
Examples include transportation (cars moving in the highway one approach for indexing spatiotemporal objects is to
system), satellite and earth change data (evolution of foreghsider time as another (spatial) dimension and use a 3-
boundaries), planetary movements, etc. The common charggnensional spatial access method (like an R-Tree [8] or its
teristic is that_ spatiotemporal objects move and/or change thgifriants [3]). Each object is represented as a 3-dimensional
extent over time. o _ rectangle whose “height” corresponds to the object’s lifetime
Recent works that address indexing problems in a Spateryal, while the rectangle “base” corresponds to the largest
tiotemporal environment include [28], [11], [10], [23], [29].2-dimensional minimum bounding region (MBR) that the
[1], [20], [21], [12], [25]. Two variations of the problem gpject obtained during its lifetime. While simple to implement,
are examined: approaches that optimize queries about {h approach does not take advantage of the specific properties
future positions of spatiotemporal objects ([11], [23], [lof the time dimension. First, it introduces a lot of empty space.
[21], [22]) and those that optimize historical queries ([28lgecond, objects that remain unchanged for many time instants
[29], [10], [17], [20], [21], [12], [25]), i.e., queries about pastyj|| have long lifetimes and thus, they will be stored as long
states of the spatiotemporal evolution. Here we concentrgf&tangles. A long-lived rectangle determines the length of the
on .hlstorlcal queries, so for brevity the tgrm “h|st9r|cal" i§ime range associated with the index node (page) in which it
omitted. Furthermore, we assume the “off-line” version of thg,sjges. This creates node overlapping and leads to decreased
problem, that is, all data from the spatiotemporal evolution h Siery performance ([13], [14], [24], [25], [28], [12]). Better
already .beell"n gathered and the purpose is to index it efficienﬁ“.ervm clustering can be achieved by using “packed” R-Trees
Eor 3|mpI|C|ty we assume that objects move/change ON(lfke the Hilbert R-Tree [9] or the STR-Tree [15]); another idea
2-dimensional space that evolves over time; the extensing perform interval fragmentation using the Segment R-Tree

This work was partially supported by NSF grants 11S-9907477, EIA[13]' However, the query performance is not greatly improved
9983445, and the Department of Defense. [12].
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Fig. 1. An example of spatiotemporal object evolution.

Another approach is to exploit the monotonicity of thén figure 2. Here, the 2-dimensional rectangle moved linearly,
temporal dimension, and transform a 2-dimensional spatgthrting att; from the lower left part of th€z, y) plane and
access method to become partially persistent ([29], [17], [LOkaching the upper right part&t The original MBR is shown,
[12], [25]). A partially persistent structure “logically” storesas well. However, if this object is split (say, at the middle
all its past states and allows updates only to its most curraritits lifetime) the empty space is reduced since two smaller
state ([6], [16], [2], [30], [14], [24]). A historical query aboutMBRs are now used (see figure 3 where thet) plane is
time t is directed to the state the structure had at titne represented).

Hence, answering such a query is proportional to the numberClearly, an artificial split reduces empty space and thus,
of alive objects the structure contains at time That is, we would expect that query performance improves. However,
it behaves as if an “ephemeral” structure was present figris not clear if the 3D R-Tree query performance will
time ¢, indexing the alive objects dt Two ways have been jmprove by these splits. An intuitive explanation is based on
proposed to achieve partial persistence: the overlapping [Hdgel's query cost formula [19]. This formula states that the
and multi-version approaches [6]. In the overlapping approaghery performance of any bounding box based index structure
([17], [29]), a 2-dimensional index is conceptually maintainegepends on the total (spatial) volume, the total surface and the
for each time instant. Since consecutive trees do not diffgital number of data nodes. Using the artificial splits, we try to
much, common (overlapping) branches are shared betwgpitrease the total volume of the data nodes (by decreasing the
the trees. While easy to implement, overlapping createssige of the objects themselves). On the other hand, the total
logarithmic overhead on the index storage requirements [24limber of indexed objects increases. In contrast, for the PPR-
Conceptually, the multi-version approach ([16], [2], [30], [14]Tree the number of alive records (i.e., the number of indexed
[25]) also maintains a 2-dimensional index per time instarfgcords) at any time instant remains the same while the empty
but the overall storage used is linear to the number of changgce and the total volume (i.e., on average the total surface of
in the evolution. In the rest we use a partially persistent Rl “ephemeral” 2-dimensional R-Trees) is reduced. Therefore,
Tree (PPR-Tree [14], [25]). A short description of a PPR-Tregis expected that the PPR-Tree performance for snapshot and
appears in section II-B. small interval queries will be improved.

Our approach for improving query performance is to reduce In [12] we addressed the problem of indexing spatiotempo-
the empty space introduced by approximating spatiotemporal objects that move or change extent udingar functions of
objects by their MBRs. This can be accomplished by intrdgime. Assuming we are given a number of possible splits that
ducing artificial object updates. Such an update issued at tiame proportional to the number of spatiotemporal objects (i.e.,
t, artificially “deletes” an alive object at and reinserts it at the overall storage used remains linear) a greedy algorithm
the same time. The net effect is that the original object #8as presented that minimizes the overall empty space. In
represented by two records, one with lifetime that ends aparticular, the algorithm decides (i) which objects to split
and one with lifetime that starts at Consider for example a and (i) how the splits are distributed among objects. The
spatiotemporal object created by the linear movement shoaigorithm’s optimality is based on a specialonotonicity
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Fig. 2. A spatiotemporal object in linear motion. Fig. 3. An example of splitting an object once.

property which holds for linearly moving/changing objects: are allowed to move/change with a general motion over time.
Claim 1: Given a spatiotemporal object that follows a linear The rest of the paper is organized as follows. Section Il
trajectory and a number of splits, the gain in empty space dermalizes the notion of general movements/changes and
creases as the number of splits applied to the object increaggevides background on the PPR-Tree. Section Il presents
Equivalently, the first few splits will yield big gain in emptythe proposed algorithms. Section IV discusses how to use
space, while the more we split the less gain is obtained. analytical models to find a good number of splits for a given
In this paper we address the more difficult problem whedataset. Section V contains experimental results. Related work
objects are allowed to move/change with general motions oveigiven in section VI. Finally, section VII concludes the paper.
time. Unfortunately, in this case the monotonicity property
does not always hold. An example is shown in figure 4. One Il. PRELIMINARIES
split will give much less gain in empty space than two. .
Hence, new approaches are needed. We first presenf-aformal Notion of General Movements
dynamic programming algorithm and a heuristic for decid- Consider a set oV spatiotemporal objects that move inde-
ing how to apply a given number of splits on a generglendently on a plane. Suppose that the objects move/change
spatiotemporal object to maximize the gain in empty spacgith linear functions of timeix = F,(t), y = Fy(t),
Furthermore, assuming that there is a predetermined total num-€  [t;,t;). Then the representation of a spatiotem-
ber of splits, we provide a dynamic programming algorithrporal object O can be defined as a set of tuples:
for optimally distributing those splits among a collection 0® = {([ts,t;), Fu, (t), Fyy (t)), - -, ([tk, te), Fy, (1), Fy, (1))}
general spatiotemporal objects, while minimizing the totavheret, is the object creation timet. is the object dele-
volume. The difficulty lies in the fact that the number of splitéion time, ¢;,...,%; are the intermediate time instants when
might not be enough to split every object in the collectiothe movement of the object changes characteristics and
S0 an optimization criterion has to be considered. Finally,,...,Fz,, Fy,,...,Fy,, are the corresponding functions.
we describe two greedy algorithms that give close to optimkll the general case, objects can move arbitrarily towards
results, with very large gain in running time. While by usingny direction. Representing an object's movement by the
more splits the gain is increased, eventually the increase wetlllection of locations for every time instant is not efficient
not be substantial. A related problem is how to decide on tifeterms of space. It cannot be approximated very well with
appropriate number of artificial splits. Assuming that a modebmbinations of linear functions either, since the number of
is available for predicting the query cost of the index methagegments required cannot be bounded. A better approach is
used ([27], [26]), the number of splits can be easily decideth use combinations of polynomial functions. An example of
To show the merits of our approach the collection ci point moving on the(z,t) plane with the corresponding
objects (including objects created by the artificial splits) afenctions describing its movement is shown in figure 5. For
indexed using a PPR-Tree and a 3-dimensional R*-Tree [8jvo dimensional movements every tuple would contain two
Our experimental results show that the PPR-Tree consisterftinctions, the first giving a movement on the x-axis and the
outperforms the R*-Tree for snapshot as well as small internvatcond on the y-axis. This results to an object following
gueries. a trajectory which is a combination of both functions. An
We note that some special cases of indexing general spéeration in the object’s shape could be described in the same
tiotemporal objects have also been considered in the literatungry. An example is shown in figure 6 where the object follows
(i) when the objects have no spatial extents (moving pointa)general movement, keeps constant extent along the x-axis
[20], [21], and (i) when the motion of each object carand changes extent along the y-axis.
be represented as a set of linear functions (piecewise lineaBy restricting the degree of the polynomials up to a maximal
trajectories [7], [12]). For the case that points move with lineasalue, most common movements can be approximated or even
functions of time, extensions to the R-Tree have been proposegresented exactly by using only a few tuples. As the number
(Parametric R-Tree [5] and the PSI approach in [21]). Thaf tuples increases, more complicated movements may be
problem examined here is however more complex as objectpresented and better approximations can be obtained. This
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Fig. 4. An example where the monotonicity property does not hold.
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Fig. 5. A moving point and a corresponding set of polynomial functionsFig. 6. A moving object that follows a general trajectory while changing
representing the movement. shape.

approach is storage efficient, since few tuples are required the directory nodes of a PPR-Tree maintain the evolution of the
the representation of general movements/changes. It furtikerresponding index records of the ephemeral R-Tree and are
guarantees that the MBR of any movement can be fouatso augmented witinsertion-timeand deletion-timefields.
easily by computing the minimum and maximum of the An index or data record ialive for all time instants during
appropriate functions for all instants in a time interval. lits lifetime interval. With the exception of root nodes, a leaf
this paper we focus in general movements/changes of objestsa directory node is calledlive for all time instants that
and our algorithms are designed accordingly. We use, thoughcontains at leastD alive records D < B, where B is
polynomial functions for generating moving objects for outhe maximum node capacity). When the number of alive

experiments. records falls belowD the node is split and its remaining alive
records are copied to another node. This requirement enables
B. The Partially Persistent R-Tree clustering the objects that are alive at a given time instant in

a small number of nodes (pages), which in turn will minimize

Consider a spatiotemporal evolution that starts at ttme . .
and assume that a 2-dimensional R-Tree indexes the objtg'& query I/0. Searching the PPR-Tree takes into account the
lifetime intervals of the index and the data records visited.

shape and locations at tintg. As the evolution advances, the X . . ) .
2-dimensional R-Tree also evolves, by applying the evoIutiol(:l‘_?ons'der answering a query about reg@.m’?d tmef. First,
updates (object additions/deletions) as they occur. Storing t roqt which is alive at is found._ Thls 'S qulvalent 0
R-Tree evolution corresponds to making the R-Tree partial cessing the ephemeral R-Tree which |nde>'<es tlrﬁeconq,

e objects intersecting are found by searching this tree in a

persistent. The following discussion is based on [14]. Whif ~down fashion as in a reaular R-Tree. The lifetime interval
conceptually the partially persistent R-Tree (PPR-Tree) rec0|18T§) 9 )

the evolution of an ephemeral R-Tree, it does not physica%gvery record travc_arsed should contain timend its MBR

store snapshots of all the states in the ephemeral R-T uld intersect regiosy.

evolution. Instead, it records the evolution updates efficiently

so that the storage remains linear to the number of changes!!!- REPRESENTATION OFSPATIOTEMPORAL OBJECTS

while still providing fast query time. Consider a spatiotemporal obje€t that moved from its
The PPR-Tree is actually a directed acyclic graph of nodastial position at time instant, to a final position at time

(a node corresponds to a disk page). Moreover, it has a numbgmwith a general movement pattern. We can represent this

of root nodes, each of which is responsible for recordingbject using its bounding box in space and time. However,

a consecutive part of the ephemeral R-Tree evolution. Datds creates large empty space and overlap among the index

records in the leaf nodes of a PPR-Tree maintain the temponaldes (we assume that an index like a 3-dimensional R-Tree

evolution of the ephemeral R-Tree data objects. Each dataa PPR-Tree is used). A better approach is to represent the

record is thus extended to include the two lifetime fieldsbject using multiple boxes. That way a better approximation

insertion-timeand deletion-time Similarly, index records in is obtained and the empty space is reduced. The object is split



Input: A spatiotemporal objecO as a sequence of
) spatial objects, one at each time instant.
Output: A set of MBRs that coveD.

1) For0 < i < n compute the volume of the MBR
for mergingO; with O;,;. Store the results in [a
priority queue.

2) Repeatn times: Use the priority queue to merge
the pair of consecutive MBRs that give the small-
est increase in volume. Update the priority queue
with the new merged MBR.

Fig. 8. The greedy heuristic (MergeSplit).

Time

Fig. 7. An 1-dimensional example of representing an object with one and
three MBRs. . ) . )
dynamic programming algorithm that computes the optimal

positions for thek splits and the total volume after these splits.
into smaller consecutive objects and each one is approximatts is achieved by computing the vallig|0, n].
with a smaller bounding box (see figure 7). Note that we Theorem 1:Splitting one object optimally using splits can
consider splitting alonghe time axis only since the time be done inO(n2k), where the lifetime of the object {gy, t,,).
dimension is the main reason of the increased empty space Proof: We have to compute thek values of the array
and overlap. Vi[0,4], 0 < I < k,0 < ¢ < n. Each value in the array
Next, we present methods for splitting objects in spatioterdan be found by computing the minimum ofvalues using
poral datasets in order to decrease the overall empty space @iedformula above. The volumE(j, i] of the object between
increase the query performance. We break the problem ipositions;j andi can be precomputed for every runfor all
two sub-problems: values ofj, usingO(n) space and)(n) time and thus does
A Given an object and an upper limit in the number ofot affect the time complexity of the algorithm. [ ]
splits we have to find how to split the object such that 2) An Approximate Algorithm (MergeSplit)fhe dynamic
the maximum possible gain in empty space is obtainggtogramming algorithm is quadratic to the lifetime of the
B Given a collection of objects and a predetermined nurobject. For objects that live for long time periods the above
ber of splits we try to distribute the splits among alalgorithm is not very efficient. A faster algorithm is based on
objects in order to optimize the query performance @ greedy approach. The idea is to start withifferent boxes,

the index. one for each time instant and merge the boxes in a greedy way
(figure 8). The running time of the algorithm @&(nlgn).
A. Splitting One Object To improve the running time we can merge all consecutive

boxes that give a small increase in volume. Then, we can run

Consider a spatlotemporall object V\{'th I|'fet|me [to’t”.) " the greedy algorithm starting with fewer boxes. This greedy
Assume that we want to split the object inkoconsecutive . . : . ;
algorithm gives in general sub-optimal solutions.

objects in a way that minimizes the total volume of its
representation. As we discussed above, we use splits in the
form of artificial updates. It would be logical to assume thd. Splitting a Collection of Objects

we only need to consider splitting an object at the points |, yhis subsection we discuss methods for distributing a

where the movement changes its characteristics (in case tatper of splitski among a collection ofV' spatiotemporal

the movement is represented by a combination of functions f&5jects. While using more splits to approximate the objects

example). This approach does not give optimal gain reSUItSifﬂproves query performance by reducing the empty space,

most cases, as could be shown with a counter example (368 split corresponds to a new record (the new MBR) and
figure 7 for an intuition behind the problem). thus increases the storage requirements. Hence, if we are given
1) An Optimal Algorithm (DPSlet):Let Vi[0,i] be the 3 tota number of splitgC (which may correspond to an upper
volume of the MBRs corresponding to the part of the Spgit on the disk space) and a set of spatiotemporal objects,
tiotemporal object betweer, and t; after usingl optimal ;e \yant to decide which objects to split and how many splits
splits. Then, the following holds: should be allocated to each one of these objects.
Vi[0,i] = min {V;_1[0,4] + V'[4,i]} 1) An Optimal Algorithm: Assuming an ordering on the
0sj<i spatiotemporal objects (each object gets a number between
whereV[j,] is the volume of the MBR that contains the parand N), let T'V;[i] be the minimum total volume occupied by
of the spatiotemporal object betweeénand¢;, without any the firsti objects with optimal splits, andV;[i] be the total
splits. The formula states that in order to find the optimaiolume for approximating théth object using; splits (e.g.,
solution for splitting the object betweey and¢;, we have with j 4 1 boxes.) we observe that:
to consider all intermediate time instants and combine the

previous solutions. Using the above formula we obtain a TVl :orél]i-gl{TVl—j[i_lh'Vj[i]}



Input: A set of spatiotemporal objects with cardinaljty Input: A set of spatiotemporal objects with cardinality
N. N.
Output: A near optimal minimum volume required to Output: A near optimal minimum volume required [to
approximate all objects witli splits. approximate all objects witli splits.
1) Find volume change for every object using one 1) Allocate splits by calling thé&reedy Algorithm
split. Store in a max priority queue. PQi.1 is a min priority queue that sorts objects
2) For K iterations: Remove the top element |of according to the gain given by their last split.
the queue. Assign the split to the corresponding PQ,.2 is a max priority queue that sorts objects
object. Calculate the volume change if one more according to the gain given if two extra splits are
split was used on the same object. Reinsert| the used per object.
object in the queue. 2) Remove top two elements fronPQ;,;, let
i - 01, 02. Remove top element frolRQ;,2, let Os.
Fig. 9. Greedy Algorithm. Make sure thaD; # O, # Os. If the gain for
Os is larger than the combined gain fér, and
O, redistribute the splits and update the priority
We use the above formula to find the total volume for each queues.
number of splits. A dynamic programming algorithm can be| 3) Repeat last step until there is no change in|the
used with running timeO(NK?). To compute the optimal distribution of splits.
solution first we need the optimal splits for each object, which
can be found by using the dynamic programming algorithfid- 10- LAGreedy Algorithm.
presented in section IlI-A.1. Hence, the following theorem
holds:
Theorem 2:Optimally distributing X splits amongN ob- fashion, as before. When the greedy assignment is complete,
jects can be done iO(NK?). one new priority queueP();,; is created, which sorts the

2) The Greedy AlgorithmThe dynamic programming al- Objects by the gain offered by the last split allocated to them
gorithm described above is quadratic to the number of splif§. an object is splitk times, sort the object according to the
That makes the algorithm impractical for many real life appli“olume gain yielded by théth split). The top of the queue
cations. Therefore, it is intuitive to look for an approximatés the minimum gain. A second priority queu&);,> is also
solution. The simplest form of such a solution would be tBeeded, which sorts the objects by the volume that would be
use a greedy strategy: Given the split distribution so far, firg®ined if two more splits were allocated to each one (if an
the object that if split one more time (or for the first time) iobject is splitk times, sort the object according to what the
will yield the maximum possible global volume reduction, andolume gain would be if it was spl + 2 times). The top of
assign the split to that object. Continue in the same way urifile queue is the maximum gain. If the gain of the top element
there are no more available splits. The algorithm is shown @ PQuaz2 is bigger than the sum of the gains of the two top
figure 9. Assuming the best splits are known in advance felements ofPQ,.: the splits are reassigned accordingly, the
all objects, the complexity of the main loop@% K lg N) and queues are updated and the same procedure continues until
the complexity of the algorithm i©(K lg N + N lg N). there is no more change in the distribution of splits. In essence,

3) The Look-Ahead Greedy Algorithm (LAGreedyljhe the algorithm tries to find two objects for which the combined
result of the previous algorithm will not be optimal in thegain from their last splits is less than the gain obtained if a
general case. One reason is the following. Consider an objélterent, third object, is split two times extra (obviously an
that if split once gives a very small improvement in emptgbject not conforming to the monotonicity property).
space but if split twice most of its empty space is removed The algorithm has the same worst case complexity as the
(see figure 4 for an example). Using the greedy algorithfifeedy approach. However, experimental results show that it
it is probable that this object will not be given the chancachieves much better results for the small time penalty it
to be allocated any splits, because the first split is poor afgtails.
other objects with better initial splits, will be chosen before
it. However, if we allow the algorithm to consider more than IV. FINDING THE NUMBER OF SPLITS
one splits for every object at each step, the possibility for The real objective of a split distribution algorithm is not
this object to be chosen for splitting is much higher. Thi® minimize the total volume itself, but to reduce the cost of
observation gives an intuition about how the greedy strategmswering a query if a predefined query distribution model is
could be improved to give a better result, closer to the optimaliven. The objective function that should be optimized must
At every step, instead of finding the object that yields theepresent this cost. Therefore, we need to define a function
largest gain by performing one more split, we could look ahedldat is evaluated after each split and gives the average number
and find objects that result in even larger gain if two, three of 1/Os for answering a query. This function will help us find
more splits are assigned all at once. the number of splits that gives the best query results.

For example, the look-ahead-2 algorithm works as follows The splitting algorithms discussed in the previous section
(figure 10). First, all splits are allocated one by one in a greetgke as input the total number of splits and generate a new



dataset with smaller total volume. However, it is important tapproximated with a random number of polynomials between
choose a number of splits that gives a good trade-off betwekrand 10. The polynomials have randomly generated coeffi-
guery time and space overhead. The choice of a good valued@nts but are either of first or second degree (of course any
this parameter affects the performance of the index structurgpe of polynomials could easily be generated). All movements
In this section, we give an overview of two methods foare normalized in the unit squafé, 1]2. The extents of the
automatically computing a good value for this parameter. rectangles are randomly selected between 1/1000 and 1/100

The first method is based on using analytical models @ the total space.
predict the performance of the index. For a given number For the railway datasets we generated a map containing 22
of splits, compute a distribution of splits and estimate songities and 51 railways. The map approximates the states of
statistics about the generated dataset after splitting. Use @adifornia and New York with most of the tracks connecting
statistics as an input to the analytical model of the indértra state cities with each other. Few cities belong to different
that will be used and get a prediction on the number of disitates in-between and there is a number of tracks connecting
accesses required to answer a random query from a quellythe states across country. The distances of the cities were
distribution. Repeat for a different split distribution. Thusapproximated to match reality. The trains are allowed to make
instead of trying to minimize the total volume, try to minimizeup to 10 stops and travel for as long as 36 hours with a speed
the average query cost which is the ultimate goal! that is randomly selected between 60 and 75 miles per hour.

Another way to find the best number of splits among a sbio train is allowed to go back to the city were it originated
of possible values is by using sampling. For each number without stopping somewhere else in-between. After all the
splits, an index is created and a set of representatives quepiagameters of the route have been calculated, a series of linear
are evaluated on each index. The number that gives the Hesictions is generated, describing the trajectories in time. The
query performance is then chosen. However, instead of usiajjway tracks are considered to be straight lines. For these
the full dataset, it is possible to use a small sample and credagasets also, time extents from 0 to 999 time instants.
the indices over this sample. The number of splits should beFor both index structures page capacity was set to 50 entries
normalized to the full dataset. and we used a 10 page LRU buffer. In addition, for the PPR-
Tree we set the minimum alive records per node parameter
t0 Pyersion = 0.22, the strong version overflow parameter to
Py,, = 0.8 and the strong version underflow f&,,,, = 0.4.

To test our algorithms we created four random datasets (uAiso, the objects were first sorted by insertion time. For the
form) of various sizes with moving rectangles in 2-dimension&*-Tree objects were inserted in random order, but the time
space, and another four datasets with trains moving ondimension was scaled down to the unit range first [25]. For the
railway system (skewed). All object trajectories were appro®PR-Tree the time dimension extent does not matter. To test
imated with MBRs. First, each object is split with the optimathe resulting structures we randomly generated four snapshot
(DPSplit) algorithm and the merge heuristic (MergeSplit) anand two range query sets with 1000 queries each. Details about
the results are stored. Then, the optimal (Optimal), greethese sets are summarized in Table Il. For all experiments
(Greedy) and look-ahead-2 greedy (LAGreedy) algorithms aitee buffer was reset before the execution of every query. All
used to distribute various numbers of splits (from 1% to 150%xperiments where run on an Intel Pentium Ill 1GHz personal
of the total number of objects) among the objects; again tkemputer, with 1GB of main memory.
splitting results are stored. In the rest of the sectidi,splits

means that we usgf; N total number of splits on a datasets comparison of Single-Object Spliting Algorithms

with N spatiotemporal obje_cts. For_comparison purposes V\_/eFirst we compare the dynamic programming (DPSplit) and
also generated datasets using the simpler approach of split Eg greedy (MergeSplit) algorithms for splitting a single object.
n

the objects in a piecewise manner, i.e., at the points in order to test their efficiency, we calculated the best splits
where the polynomial representing the movement changoefsa” objects contained in the )r/;';mdom datasets, using as raan
characteristics, which is the same as representing the move- J ' 9 y

ments with piecewise linear functions as in [21]. This methozloIItS as necessary and computed the CPU time needed. In

resulted in a number of splits about 400% of the total numb gru'zﬁellgr t?ﬁalisr:tzriﬁgnéegslnI'taalloierl'rtlrgrr]nmlr?ezgilde,afgccngt
of objects. Finally, we used the 3-dimensional R*-Tree ang 9 pit algor

the PPR-Tree to index the resulting data. We decided not ¢ day to f|.n|sh sphttmg the objects. On .the other hand,
the MergeSplit algorithm was very fast, requiring from a few

. . . .
use any packlr)g algorlthms for the R*-Tree, since frpm Ofhinutes to a few hours. In order to show that the MergeSplit
previous experience, packing does not help substantially qub

) . X o o
datasets of moving objects. Packing algorithms tend to clusfieg.omhm produces good splits, we optimally distributed 50%
splits on all random datasets, and calculated the total volume

together objects that might be consecutive in order even thou the resulting MBRs. The results are shown in figure 12.

they may correspond to large and small intervals. This lea o - .
to more overlapping and empty space [12]. Details about aTearly, MergeSplit gives very similar results to DPSplit.

datasets are presented in Table I. _ S .

For the moving rectangles time extents from 0 to 999 tinfé: Comparison of Split Distribution Algorithms
instants. The lifetime of each object is randomly selected Next, we evaluate the performance of the Greedy and LA-
between 1 and 100 time instants. The object movementGseedy algorithms, in comparison with the optimal dynamic

V. EXPERIMENTAL RESULTS



TABLE |
RANDOM AND RAILWAY DATASETS.

Random 10k 30k 50k 80k
Total Objects 10000 30000 50000 80000
Objects Per Instant (Avg.) 545.873 | 642.25 | 2749.97 | 4390.54
Total Segments 37179 111774 | 186539 | 297413
Object Lifetime (Avg.) 50 50 50 50
Object Extent (%) 0.1%-1%| 0.1%-1% | 0.1%-1%| 0.1%-1%
Railway 10k 30k 50k 80k
Total Objects 10000 30000 50000 80000
Objects Per Instant (Avg.) 190.605| 570.7 948.026 | 1522.78
Total Segments 27678 82792 137011 | 220996
Object Lifetime (Avg.) 18 18 18 18
TABLE II
SNAPSHOT AND RANGE QUERY SETS

Snapshot| Cardinality | Extents (%)| Duration

Tiny 1000 0.01-0.1 1

Small 1000 0.1-1 1

Mixed 1000 0.1-5 1

Large 1000 1-5 1

Range Cardinality | Extents (%)| Duration

Small 1000 0.1-1 1-10

Medium 1000 0.1-1 10 - 50

programming approach. We distributed 50% splits on thbe PPR-Tree, while there is a negative effect for the R*-
random datasets using all three algorithms and calculated ffiree. For completeness, in figure 16 we present the disk space
CPU cost of each approach. The results are shown in figure @&quired by the two structures, for an increasing number of
Time is represented again in a logarithmic scale, since thplits. We can see that the PPR-Tree requires almost twice
optimal algorithm requires up to a few hours to distribute th&s much space as the R*-Tree, which is a reasonable tradeoff
splits for the bigger datasets. On the other hand, the two greexdynsidering the gain in query performance. The LAGreedy
approaches are much faster with the LAGreedy algorithaombined with the PPR-Tree achieves an improvement of 30%
performing about only 10% slower than the Greedy algorithrin query performance over the best alternative (75 vs 110 1/Os).
both requiring from a few seconds to a few minutes. To test

the efficiency of our algorithms we distributed 150% split) comparing Partially Persistent and Straightforward Ap-
using the LAGreedy algorithm on the random datasets aBﬂ)aches

indexed the resulting MBRs using the PPR-Tree. Finally, we _.

queried the resulting structures with the mixed snapshot quer)): ”?a”Y’ we performed a numbe_r of snapshot and rang*e
set, recording the average number of disk accesses nee gres in order to test how t-he part_lally persistent and the R*-
The results are shown in figure 14. For all the datasets tl%r%?e structures react when increasing the number and type of

we tried, the LAGreedy algorithm performed as well as tholects. For the small range queries the R*-Tree is somewhat

; : ; tter for unsegmented data and 1% up to 5% splits, while
optimal algorithm, while the Greedy approach was alwa ’ .
inﬁ:erior g y app the PPR-Tree becomes much better when the number of splits

increases. In figure 17 we plot the average number of disk
] o accesses for small range queries and 150% splits for the
C. Benefits and Drawbacks of Splitting PPR-Tree and 1% splits for the R*-Tree, distributed with the
In order to show that splitting a dataset is beneficial onlyAGreedy algorithm. We also plot the performance of the R*-
for the partial persistence indexing approach, we distributedreee with the piecewise data. It is obvious that the partial
series of different numbers of splits on all datasets using thersistence approach is by far superior after splitting. For all
LAGreedy algorithm. Then, we indexed the resulting MBRdatasets and any number of splits we observed that the PPR-
using a 3-dimensional R*-Tree and a PPR-Tree. We querigcee is consistently better than the R*-Tree approaches for
the resulting structures using the small range queries asmall, large and mixed snapshot queries. An example is shown
recorded the average number of disk accesses needed. ififgure 18 for the mixed snapshot queries. We used the 150%
results for the 50k random dataset are shown in figure 1BPR-Tree, the 1% R*-Tree and the piecewise R*-Tree. The
Observe that as the number of splits increases the averageresting result here is that the piecewise approach [21] is
number of disk accesses needed decreases substantiallynfoch worse than the no splits approach. The benefit from
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