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ABSTRACT

In this work we concentrate on categorization of relational
attributes based on their data type. Assuming that at-
tribute type/characteristics are unknown or unidentifiable,
we analyze and compare a variety of type-based signatures
for classifying the attributes based on the semantic type
of the data contained therein (e.g., router identifiers, so-
cial security numbers, email addresses). The signatures can
subsequently be used for other applications as well, like
clustering and index optimization/compression. This ap-
plication is useful in cases where very large data collections
that are generated in a distributed, ungoverned fashion end
up having unknown, incomplete, inconsistent or very com-
plex schemata and schema level meta-data. We concentrate
on heuristically generating type-based attribute signatures
based on both local and global computation approaches. We
show experimentally that by decomposing data into g-grams
and then considering signatures based on g-gram distribu-
tions, we achieve very good classification accuracy under
the assumption that a large sample of the data is available
for building the signatures. Then, we turn our attention
to cases where a very small sample of the data is available,
and hence accurately capturing the g-gram distribution of a
given data type is almost impossible. We propose techniques
based on dimensionality reduction and soft-clustering that
exploit correlations between attributes to improve classifica-
tion accuracy.

1. INTRODUCTION

Many business practices generate vast amounts of data on
a daily basis. The data is often generated in a distributed
fashion, spanning wide geographical areas. Data analysts
need to peruse the data and perform a variety of analyti-
cal tasks for business process optimization purposes, finding
current trends, predicting future developments and, gener-
ally, identifying and solving problems. It is not uncommon
for businesses to maintain relational databases that contain
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hundreds of tables, and in the order of tens of thousands of
attributes. In some cases tables and attributes are created
automatically, in other cases manually, but it is not uncom-
mon for the schema and important attribute level meta-data
of such ungoverned data collections to be fuzzy, unavailable
and in general overly complicated and difficult to under-
stand. Furthermore, it is often the case that only a sam-
ple of the data is made available for analysis purposes, due
to practical considerations regarding the size of the data.
Therefore, robust tools for data analysis are necessary in or-
der to understand, identify, clean and process the collected
data.

As a concrete example, many business processes within AT&T
generate data logs that are necessary for assessing the suc-
cess or failure and the quality of the given process. Such data
logs are generated, for example, from network traffic moni-
toring tools (e.g., ICMP, BGP), from customer care services
(e.g., statistics from call logs and recorded call sessions),
from the sales department, etc. To complicate matters even
more, the various subsidiaries of AT&T have their own, au-
tonomous business processes that may do data collection
independently (e.g., AT&T Mobility and YellowPages.com).
AT&T Labs receives several gigabytes of data feeds per day
from a variety of sources within the company. The data
consists of tens of thousands of relational attributes that
are usually only sampled and, in many cases, only with very
small sampling ratios in order to cope with the overwhelm-
ing flow of information. The main purpose of collecting the
data is to distribute the feeds to various groups within the
labs that will perform analytical tasks for identifying and
solving problems. It is easy to see that the data analysis
task becomes daunting, especially since a large portion of
the data might contain inconsistencies due to diverse data
collection specifications, errors and incompatibilities.

Previous work on mining the structure of the data has con-
centrated on quickly identifying attributes containing simi-
lar values [13]. In this work we concentrate on categorization
of relational attributes based on their data type. Assuming
that attribute type/characteristics are unknown or uniden-
tifiable, we analyze and compare a variety of techniques for
classifying the attributes based on the semantic type of the
data contained therein (e.g., router identifiers, social secu-
rity numbers, email addresses). Notice that we are not try-
ing to identify similar attributes with respect to the actual



content of the data columns, which is an orthogonal prob-
lem. Instead, we would like to cluster attributes that contain
data of similar semantic type, irrespective of how much ac-
tual data overlapping, two columns exhibit. To that end,
we consider a variety of type-based attribute signatures and
measure the ability of a signature to capture the underlying
data type characteristics of an attribute. By computing the
similarity of two signatures we can identify the similarity of
their data types. The signatures can subsequently be used
for other applications as well, like clustering and index op-
timization/compression. We also assume that only a small
sample of the data contained in each attribute is available for
building the signatures, and test the ability of signatures to
capture data type information under varying sample sizes.
The usefulness of data type categorization is self-evident. An
analyst confronted with unknown/obscure data that never-
theless exhibit some structure (e.g., cryptic router, link, ses-
sion, customer identifiers) can potentially identify attributes
by placing them into the appropriate groups. A data explo-
ration tool can cluster attributes by data type as a roll-up
operation. A data indexing framework can create separate
indexes per data type to improve performance (if the data
type of the query can be identified, only the relevant indexes
need to be explored).

By considering all data as strings and decomposing strings
into g-grams, we can represent each attribute as a high di-
mensional vector in the g-gram feature space. Representing
attributes as g-gram vectors is useful, since g-grams tend
to follow distributions that are characteristic of the partic-
ular data. The g-gram distribution has been shown to give
information about the language of the text, the underlying
topic and even authorship [2, 22]. We will show experi-
mentally that g-gram distributions can also give informa-
tion about the semantic type of the data. Clearly, one can
use these g-gram vector signatures directly for type-based
categorization (any similarity /distance function can be used
for classification purposes). But, these signatures consume
large amount of space, and are shown to work poorly under
very small samples, failing to capture properly the actual
g-gram distribution of the attributes. Hence, we also con-
sider a variety of techniques for reducing the size of g-gram
vector signatures, that can capture underlying similarities
and dissimilarities between pairs of signatures (we construct
signatures using global dimensionality reduction and clus-
tering strategies for that purpose), thus enabling accurate
classification even under very small sampling ratios.

The rest of the paper is organized as follows. Section 2
presents the formal problem setting and notation. Section 3
presents a variety of signature techniques along with analysis
of their utility on type-based categorization under various
settings. Section 4 presents various optimizations. Section 5
presents an empirical comparison of the proposed signatures
with real data. Finally, Section 6 presents related work and
Section 7 concludes the paper.

2. BACKGROUND
2.1 Problem Setting

Assume that the data collection consists of a large set of
relational attributes C' = {c1,...,¢cn}. Our goal is to as-
sociate with each attribute a signature that best describes
the semantic data type of the data contained therein. Ulti-

mately, we would like to use the signatures for classification,
clustering, indexing, and other applications. Irrespective of
data type, we view data entries as strings and decompose
them into g-grams, representing each attribute as a high di-
mensional vector in the g-gram feature space. Let s be a
string. We denote the set of g-grams of s with Qq(s) (e.g.,
Qs(‘Babak’) = {‘Bab’,‘aba’, ‘bak’} is the set of 3-grams of
string ‘Babak’). Let the known g-gram universe @ (as por-
trayed by the attribute samples that are available for pro-
cessing) be of size d = |@|. The attribute samples are repre-
sented as an n X d matrix X, where every element x;; is the
frequency of appearances of g-gram j in attribute i. We call
the rows of X the g-vectors of attributes ¢;. Depending on
the size of the samples, the number of attributes, and the
type of attributes, d (which is the size of the distinct union of
all g-grams) can potentially be extremely large. For exam-
ple, using 3-grams d could be in the order of 503, assuming
a 50 character alphabet.

2.2 Q-gqram distributions

As already mentioned the g-gram distribution conveys im-
portant information about the underlying data. Figure 1
shows the distribution of 3-grams of a variety of attributes
taken from the business listings data of YellowPages.com [1],
like business names and query terms. These graphs show the
occurrence tallies of 3-grams in the data entries of a partic-
ular attribute on the y-axis, where the universe of 3-grams
is lexicographically sorted on the z-axis (with 3-grams con-
taining special characters having the highest priority, then
numerals, then letters). We can clearly see that the g-gram
distributions of different data types are completely differ-
ent as expected (e.g., IP addresses and business names), but
even for similar data types (like business names and search
terms) the distributions exhibit certain similarities but a lot
of dissimilarities as well.

We expect signatures built on g-grams to be able to con-
vey significant information regarding the type of the data.
A straightforward signature for type-based similarity is to
use the g-vectors associated with the attributes. The simi-
larity of two attributes can then be computed with respect
to the set resemblance of the corresponding g-vectors (i.e.,
the intersection over the union of the g-gram sets). Resem-
blance is a measure of content similarity between attributes,
and attributes of similar content naturally have similar data
types. A variety of other signature alternatives fall under
the same category. For example, one can use the g-vectors
for computing cosine similarity (or any other set similarity
measure) to similar effect [2].

In our experimental evaluation we show that for large sam-
ple sizes, g-vector signatures capture the expected g-gram
distribution of a given data type accurately and result in
very high classification accuracy. This is a good indication
that indeed the g-gram distribution can be a good type-
based similarity signature. Nevertheless, for small sample
sizes, where it is harder to capture the underlying g-gram
distribution accurately, more sophisticated techniques are
needed in order to achieve classification of high quality. Re-
semblance of g-gram sets inherently cannot capture similari-
ties and dissimilarities between attributes, mainly because it
does not take advantage of hidden structure and correlations
between g-grams and attributes. In that respect, it is a local
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Figure 1: Q-gram distribution of various attributes.

approach that builds attribute signatures independently for
each attribute. Hence, under the small sample assumption,
we need to consider global approaches that take advantage
of correlations between attributes. In addition, type-based
categorization is context dependent. For example, one could
argue that English and Chinese names belong to either the
same data type for a particular application (e.g., a customer
database) or very different data types in other settings (e.g.,
categorizing information by language). It is essential to be
able to design techniques that take into account context de-
pendent criteria as well. Global approaches are well suited
for our purposes.

3. TYPE-BASED SIGNATURES
3.1 Min-hash

Since the g-gram set of an attribute can be very large, g-
vectors become excessively large, and computation of sim-
ilarity very expensive. To alleviate the problem one can
estimate resemblance by using min-hash signatures [8, 5].
Min-hash signatures essentially select a random subset of
the g-grams in a principled way in order to give guarantees
on the estimation accuracy obtained. The resulting signa-
tures have very small size and can be used to estimate re-
semblance accurately and efficiently. Computing signatures
on updates (data updates as well as inserting or deleting
attributes) is straightforward.

To compute a min-hash signature of size £ < d, given a
g-vector @@, we use k independent random permutations of
set @ and keep the smallest g-gram value under each per-
mutation. For practical purposes we can use k independent
hash functions from a family of universal hash functions [6]
and keep the g-gram value that correspond to the smallest
hash value under each hash function. Formally, let the in-
dependent hash functions be hi, ..., hi. The k-dimensional
min-hash signature of @ is defined as:

S = {minscqhi(s),...,minscqhr(s)}. (1)

The signatures can be used to estimate the resemblance be-
tween two g-gram sets. Resemblance is defined as the size
of the intersection of the two sets over the size of the union:
Q1N Q2|
r&1, Y2) = . 2

(@1.Q2) = (ST @
Using min-hash signatures, resemblance is estimated as a
fraction of values two signatures have in common:

& ) .
. 1 e 1, ST =85
7(Q1,Q2) = n 2;5“51 - { 0, otherwise ®)

It has been shown that reliable estimates of resemblance
can be obtained from such signatures [8, 5]. Min-hash en-
ables classification of very high accuracy when sample sizes
are sufficiently large, and the g-gram distribution of an at-
tribute can be captured accurately. Nevertheless, similarly
to g-vectors, performance deteriorates for very small sample
sizes.

3.2 Dimensionality Reduction and PCA

By considering signatures in the vector space model we can
apply any dimensionality reduction scheme for revealing po-
tential statistical patterns in the data while reducing di-
mensionality and producing more compact and meaningful
signatures. A simple class of dimensionality reduction tech-
niques is based on orthogonal linear transformations. An
example is Principal Component Analysis (PCA) [10]. PCA
reduces the dimensionality of the data by retaining only the
biggest principal components. The principal components
are defined by a new coordinate system which takes as its
basis the eigenvectors corresponding to the largest eigenval-
ues of a related covariance matrix. This coordinate system
is in a sense a linear transformation of the original coordi-
nates into a space that reflects the largest pairwise variance
between dimensions on the first axis, the second largest pair-
wise variance on the second axis, and so on and so forth. Es-
sentially, one can extract signatures from the data that take



into consideration correlations between the original dimen-
sions. This is a departing point from local approaches that
compute attribute signatures independently. By assuming a
closed data space we can compute signatures that not only
reflect similarities between attributes, but also dissimilari-
ties and, in general, hidden data trends.

We use PCA to perform dimensionality reduction on the
g-vector matrix X. Clearly, there are two dimensions over
which we can perform dimensionality reduction. We would
like to either express each attribute as a reduced set of g-
gram combinations, or represent g-gram membership into
a reduced, uncorrelated set of attribute combinations. The
first approach reduces the dimensionality of the g-gram space
d, while the second approach reduces the dimensionality of
the attribute space n.

For the first approach we use PCA as follows. First, the
data in X is normalized by subtracting the column means
from the data in order to center at zero. Then, the d X d
covariance (or correlation) matrix C = X’X is computed
(where X' is the transpose of X). The eigenvectors and
eigenvalues of the covariance matrix are calculated, and the
k eigenvectors corresponding to the k largest eigenvalues are
selected. Denote the d X k eigenvector matrix with V. The
columns of V' form the basis of the new coordinate system of
reduced dimensionality. Now, we project the data contained
in X to the new coordinate system by computing the n x k
matrix Z = XV. We take the rows of Z to be the type-based
signatures of the attributes.

For the second approach, first we normalize the data in X
once again and then compute the n X n covariance matrix
C = XX'. Then we compute the eigenvectors and eigen-
values of C' and keep the k eigenvectors corresponding to
the top-k eigenvalues. Denote the n X k eigenvector matrix
with V. Notice that one can use the rows of the covari-
ance matrix C' as type-based signatures for the attributes.
Each row of C' contains the covariances of a specific data
attribute with all other attributes, in a sense representing
an attribute with respect to its similarities and dissimilar-
ities with other attributes. The covariances can be used
in a sense to gauge the similarity of two distributions with
respect to their similarities and differences across a vari-
ety of other distributions. Furthermore, we can project the
n X n covariance matrix onto the coordinate space defined
by the eigenvector matrix V', to reduce the size of the ma-
trix to its principal components. The resulting n x k£ ma-
trix Z = C'V, gives the attribute signatures in the reduced
space. We refer to this version of PCA as PCAT (for trans-
pose). Further details about PCA are beyond the scope of
this paper and can be found in [20]. Irrespective of how we
compute the type-based signatures, we estimate type-based
similarity with respect to the vector similarity of signatures.
Any vector similarity/distance function can be used for that
purpose. Examples include the Euclidean distance, cosine
similarity, and Hellinger distance.

Essentially, PCA identifies the most prominent patterns, re-
lationships among the original dimensions of the data by
exposing the projections of the data with the greatest vari-
ance. The drawback of PCA is that first, computing the
eigenvectors of the covariance matrix can be very expensive

depending on the size of n or d, and second, in order to
handle data updates all signatures need to be recomputed.
One possible way of handling new attributes is to use the
existing eigenvectors to compute a signature, and postpone
complete recomputation until a significant amount of the
data changes.

3.3 Soft-clustering and fuzzy c-means

Another approach for discovering underlying relationships
in the data is clustering. In our application we would like
to cluster attributes based on g-gram membership. Then,
each attribute cluster represents a different data type. More
specifically, we are interested in creating a signature for each
attribute that conveys the probability of the attribute to be-
long to a particular data type. For that reason we focus our
attention on soft-clustering algorithms, i.e., algorithms that
allow data points to belong to multiple clusters with varying
probabilities (as opposed to hard clustering techniques that
associate each data point with only one cluster). A repre-
sentative soft-clustering approach is fuzzy c-means [15].

Fuzzy c-means tries to assign each data point to multiple
clusters with varying probabilities. The closer a point is to
the centroid of a cluster, the larger the membership probabil-
ity. The algorithm is initially given a target number of clus-
ters k. Each data point is randomly assigned membership
probabilities for each cluster. Let p;; be the membership
probability of attribute ¢; to cluster j, ¢t; be the centroid of
cluster j, and ||-|| be any distance function. The centroids of
the clusters are computed as the mean of all points weighted
by the membership coefficients:

=2 o, > 1L (4)
i=1Pij

The algorithm follows an iterative procedure that tries to
minimize an objective function based on any distance func-
tion that measures distance of points from the cluster cen-
troids. In that respect the algorithm is very similar to k-
means, and converges to a local minimum, depending on the
initial distribution of points into clusters [4]. The objective
function minimized is:

n k
S5 pllle — 1P m > 1. (5)

i=1 j=1

After every iteration the algorithm recomputes the cluster
centers using Equation (5), and membership probabilities
using:
1

kooollei=till\ 25"
Y (=)™
Similar to PCA, when new attributes arrive, fuzzy c-means
needs to be re-run to compute the new signatures. Contrary

to PCA fuzzy c-means cannot assign temporary signatures
to newly arriving attributes.

(6)

pij =

Let X be the n x d data matrix. By giving X as input
to fuzzy c-means the algorithm will return an n x k soft-
clustering matrix Z, where z;; represents the probability of
attribute i belonging to cluster j. We use the rows of Z
as the attribute signatures. We expect attributes of similar
data types to have similar cluster distributions. As before,



we measure signature similarity using any vector similar-
ity /distance function. We refer to this approach as FCM.

Alternatively, we can run fuzzy c-means on the transpose
data matrix X’. The resulting d x k soft-clustering matrix
Z represents the membership probabilities of g-grams into
clusters. Given the initial data matrix X, the projection
Y = X7 yields an n X k matrix Y that in every row contains
the probabilities of an attribute consisting of a mixture of
g-gram clusters, with respect to the g-grams contained in
that attribute. We can use the rows of Y as the type-based
signatures. We refer to this approach as FCM7”.

3.4 Information bottleneck

The Information Bottleneck method (IB) [25] is a non-linear
transformation approach that is related both to dimension-
ality reduction techniques and soft-clustering algorithms.
Given the empirical joint distribution of two variables, the
idea behind IB is to compress one variable (by creating clus-
ters) in a way that best preserves mutual information. The
mutual information is the relative entropy between a joint
distribution of two variables and the product of the marginal
distributions:

106Y) = Y Y plelog POV (@)

s et (@)p(y)’

The entropy of a variable is a measure of uncertainty. For
example, a fair coin has maximum entropy (50% heads or
tails), while a Bernoulli trial with success rate p € {0,1}
has zero entropy (no uncertainty). Mutual information mea-
sures the information that the two variables share, i.e., how
much knowing one variable reduces the uncertainty about
the other. If the two variables are independent, then know-
ing one does not give any information about the other.

In our case one variable is the data type of an attribute
and the other variable is the distribution of g-grams for a
particular data type. Let C' be the set of attributes and @
the g-gram universe. We would like to compress C by pro-
ducing clusters T', while preserving the mutual information
I(T; Q) as much as possible. Without compression, where
T = {{a1},...,{cn}}, clearly I(T;Q) = I(C;Q). IB tries
to find an optimal clustering by minimizing the reduction of
I(T; Q), as non-trivial clusters are formed. Using IB we get a
soft-clustering where each attribute is assigned membership
probabilities in clusters of T'. Since every attribute is now
represented as a vector of cluster membership probabilities,
where cluster selection is driven by information theoretic
measures, we can use these vectors as our type-based signa-
tures. We say that attributes with similar vectors (similar
cluster membership probabilities) most probably belong to
similar data types, as expressed by the mutual information
between attributes and g-grams. Once again, any vector
similarity/distance function can be used for that purpose.

An important step of the IB algorithm is the addition of
background context. Background context is essential as it
helps identify structures within the data which without the
addition of background noise, would remain unnoticeable.
Background context is added during the algorithm, and re-
moved afterwards. Since data are represented as distri-
butions, appropriate backgrounds are random distributions
from the space of all distributions. Further technical details

with respect to the addition of background noise, depending
on the application at hand, appear in [11].

Similar to PCA, IB is a global strategy that considers both
similarities and dissimilarities between the data. In that
respect, by clustering the data it discovers underlying struc-
ture and correlations between attributes and g-grams. No-
tice that inherently IB considers context dependent criteria
— the diversity of attributes that are input to the algorithm
significantly affect the notion of similarity /dissimilarity be-
tween attributes. For example, given an attribute that rep-
resents phone numbers, attributes corresponding to names
will appear more similar to each other than phone numbers.
But in the absence of a field with phone numbers, attributes
containing names might as well be very dissimilar to each
other. Another strength of IB is that it can produce a soft-
clustering with the addition of background noise. Essen-
tially, background noise can provide the necessary context
for exposing inherent similarities and dissimilarities in the
data, depending on the application at hand. Further details
about IB can be found in [25]. Similarly to PCA and fuzzy
c-means, B cannot handle incremental updates. When new
attributes arrive all signatures need to be recomputed.

4. OPTIMIZATIONS

The advantages of using global approaches for constructing
signatures are obvious, but clearly these techniques come at
a cost of increased computation cost due to their exponen-
tial nature. Here, we present an optimization that can sig-
nificantly reduce computation cost, while at the same time
it can potentially improve accuracy. In the foregoing dis-
cussions we have not taken into consideration the semantic
properties of the g-grams. The document frequency of g-
grams can potentially play a significant role in computing
appropriate type-based signatures. Consider, for example,
an attribute containing HTML addresses, which will have
a high occurrence of g-grams from the string ‘http://’, or
a field of IP addresses that will have high occurrence of g-
grams containing numerals and dots. The existence of such
g-grams alone could be enough to positively identify the
data type of an attribute. Intuitively, a good type-based
signature should give importance to the most frequent g-
grams. For that purpose we can assign weights to g-grams,
and use those weights when computing signatures. Assume
that the weight of a g-gram is the Inverse Document Fre-
quency (idf), i.e., the inverse of the number of times the
g-gram appears in a given attribute (we compute g-gram
idfs on a per attribute basis). Idf weights follow a Zipfian
distribution with the vast majority of the g-grams having
high idf and a very small minority having very low idf. The
biggest advantage of restricting processing only to low idf
g-grams is that by drastically reducing the input space, the
algorithms become considerably faster. In addition, as was
evident by our experimental evaluation, restricting the in-
put space to the low idf g-grams helps improve accuracy by
focusing on more informative g-grams, and reduce the in-
evitable noise present in the very high dimensional g-gram
space. One could claim that the set of high idf g-grams (the
rarest g-grams) could also be a good type-based signature
for particular data types. This is actually true and reflected
in the fact that the g-gram distribution as a whole proves
to be a good classifier. Notice that the high idf g-grams
essentially comprise almost 100% of the g-grams (but with
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Figure 2: On the left, a 25 x 25 baseline matrix with
100% similarity between all pairs of attributes be-
longing to the 5 data types. On the right, a similar-
ity matrix constructed using min-hash.

very low frequency). The problem with high idf signatures
is that they are not robust under small sample sizes and ran-
dom projections, since it is almost impossible to consistently
capture the underlying g-gram distribution of a data type,
given a number of attributes of a particular data type that
contain highly varied data, and hence highly diverse high idf
g-gram sets.

5. EXPERIMENTAL EVALUATION
5.1 Setup

For our experimental evaluation we used an Intel Xeon CPU
3.20GHz with 4 GB of RAM, running Windows Server 2003.
All code was written in C+4 and compiled both with g++
and VC++. We use two real datasets, the DBLP citation
database [23] and the business listings (BL) from Yellow-
Pages.com [1]. From the DBLP database we compiled 20
attributes containing 1000 author names each, from 5 classes
of names: Chinese, Japanese, Greek, French and German.
From the BL database we compiled 500 attributes containing
100000 entries each, from 5 different classes: business names,
query terms, addresses, phones, and IP addresses. The two
datasets are fundamentally different, since one contains only
data from one basic data type (first and last names), while
the other is more diverse, containing various unrelated fields.

We extracted random samples of various sizes from all columns

and created signatures using the representative techniques
discussed herein. For all experiments involving samples, we
extract 10 independent random samples and report averages
over 10 runs. Since the datasets are pre-labeled, we assume
that the expected classification of columns into data types
forms perfect clusters, assigning 100% similarity between all
pairs of attributes from the same type. We represent the per-
fect expected answer using a baseline square matrix that has
100% similarity on its diagonal, for all combinations of at-
tributes belonging to the same class (e.g., a baseline matrix
of 25 attributes with 5 attributes from each class is shown in
Figure 2). Then, using the attribute signatures, we compute
pairwise similarities between all attributes and create a sim-
ilar square matrix. We measure the accuracy of a particular
signature scheme as the similarity of the computed square
matrix with the baseline matrix. The similarity between the
two matrices is computed using cosine similarity.

For our evaluation we vary a number of parameters. First,
we vary the size of the sample drawn from each attribute,
from 100% down to 1% of each column. Second, we vary the
set of g-grams we consider when building the signatures. We

use all g-grams extracted from the samples and only the low
idf g-grams (the idf being computed as the inverse of the
total number of times a g-gram appears in a particular at-
tribute sample). In all cases, the low idf g-grams are defined
as the bottom 10% g-grams when sorted by idf. We also
vary the size of signatures produced, as the number of coef-
ficients per signature. The g-vector size is the total number
of distinct g-grams per sample (assuming that the g-vector
matrix X is stored as a sparse matrix), which, depending
on the size of the sample, can vary from a few hundred g-
grams up to a few thousand (depending also on the data
type of the attribute). The reduced size signatures we pro-
duce have size from 5 up to 20 coefficients, depending on
the algorithm used. For PCAT and IB the upper limit on
the number of coefficients is the total number of attributes
(where no dimensionality reduction is performed for PCA”,
and every attribute forms its own cluster for IB). Finally,
we also vary the similarity function used, and report results
using the Euclidean distance, cosine similarity and set re-
semblance where appropriate. All in all, we compute seven
signatures per attribute sample: g-vector, min-hash, PCA
and PCAT, FCM and FCMT, and IB.

5.2 DBLP

Table 1 lists the classification accuracy of all signature tech-
niques with respect to sample size, using all distance mea-
sures and signatures with 10 coefficients (except for g-vector
that has size equal to the size of the g-gram universe by
construction; e.g., 6133 coefficients for 100% sample). The
distinct number of g-grams d contained in the sample uni-
verse is shown in parentheses in the table. The data for
cosine similarity only are also plotted in Figures 4 and 5.
As already mentioned, g-vectors and min-hash, by captur-
ing the g-gram distribution accurately, work fairly well for
large samples but deteriorate for very small samples. Not
surprisingly, the accuracy of min-hash improves drastically
when only the low idf g-grams per attribute are used to cre-
ate the signatures. Since min-hash is a random projection
approach, it benefits from reducing the input space to more
informative g-grams. Still, for small samples, accuracy does
not exceed 80%. The g-vector is unaffected by the set of
g-grams used and performs better than min-hash, but has
very large size. The average size of the g-vector matrix in
a sparse representation for various sample sizes is shown in
Figure 3. In comparison, the reduced signature matrix is at
most 20 x 20 = 400 coeflicients, which is smaller than the
sparse g-vector matrix in all cases.

PCA performance is similar to that of min-hash. On the
other hand, PCAT has very high accuracy for Euclidean dis-
tance and cosine similarity, irrespective of the sample size.
Notice that pruning the g-gram space to the low idf q-grams
does not affect classification accuracy. Nevertheless, as we
will see shortly, it helps reduce processing cost significantly.
PCAT computes signatures based on the covariance matrix
of the transpose co-occurrence matrix, where each signature
is a projection of the covariances of an attribute with all
other attributes. Clearly, this signature seems to capture
similarity and dissimilarity between attributes very accu-
rately.

FCM and FCMT do not give accurate results for signatures
with 10 coefficients and small sample sizes. It is actually the
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Figure 3: DBLP: Average size of the gq-vector matrix
for various sample sizes.
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Figure 4: DBLP: Accuracy versus sample size (co-
sine similarity; all g-grams)

case that FCM appears to be sensitive to the target number
of clusters k used (10 in this case). The closer the num-
ber of cluster is to the true number of data type attributes,
the better the performance of the algorithm. Nevertheless,
since we assume that the number of data types is initially
unknown, this is a big disadvantage associated with this type
of clustering algorithms.

Finally, we can see that IB is virtually unaffected by the
reduction in the sample size, giving excellent accuracy across
all metrics and exhibiting very stable behaviour. Notice that
the DBLP dataset can be considered a fairly difficult dataset
for classification purposes, since all the attributes essentially
represent similar information. The good behaviour of IB
can be attributed to the fact that it is tailored to preserve
as much mutual information as possible when populating
the soft-clusters. Notice also that considering only low idf
g-grams has a positive impact on accuracy.

Table 2 shows the cost of constructing the signatures for
varying sample sizes. The times reported here do not in-
clude the time it takes to extract the g-grams and create
the 20 x 6133 g-vector matrix that is the input to the al-
gorithms. This time is reported as the g-vector time in the
table, for completeness. Naturally, signature computation
becomes faster as the sample size becomes smaller. PCA
is very expensive for the 100% sample since it has to work
with a very large 6133 x 6133 covariance matrix. Similarly,
FCMT suffers since it has to cluster a very large number of
data points. On the other hand PCAT (which uses a 20 x 20
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Figure 5: DBLP: Accuracy versus sample size (co-
sine similarity; low idf g-grams)
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Figure 6: DBLP: Accuracy versus signature size (co-
sine similarity; all g-grams)

covariance matrix) is by far the fastest algorithm. IB is sig-
nificantly slower than PCAT, but as fast as other algorithms
and more stable and accurate.

Finally, Table 3 shows the accuracy of the signatures as a
function of signature size, for 1% samples. The same re-
sults for cosine similarity are also plotted in Figures 6 and
7. There are three interesting observations here. First, for
min-hash, PCA, PCAT, FCM and FCM7” the size of the
signature has no impact on performance for small samples.
Second, the performance of IB improves as the signature
size increases. Third, focusing on low idf g-grams does not
affect accuracy, while it has a significant, positive impact on
performance.

5.3 BL

We turn our attention to a fundamentally different dataset
that contains a large number of unrelated attributes. For
these experiments we use 25 attributes of 5 main classes.
Every attribute contains 100000 strings. Once again, we av-
erage over 10 independent runs. Table 4 shows the classifi-
cation accuracy of various signatures with respect to sample
size. We show only the most efficient algorithms, since due
to the larger size of this dataset (d = 8731 for 100% samples)
PCA and FCMT did not terminate in a reasonable time.

We observe here that the accuracy of all algorithms deterio-
rates sharply with decreasing sample sizes when all g-grams
are considered. On the other hand, when we construct signa-



Table 1: DBLP: Accuracy vs sample size (signature size: 10).

g-vector min-hash PCA PCAT FCM FCMT 1B

g-grams  size measure
all 100% Euclid 0.89 - 0.78 1 0.89 0.83 0.89
(6133) cosine 0.99 - 0.75 1 0.98 0.52 0.89
resemblance 0.84 0.81 - - - - -
(2832) 10% Euclid 0.87 - 0.88 0.99 0.80 0.74 0.90
cosine 1 - 0.85 1 0.94 0.52 0.90
resemblance 0.79 0.76 - - - - -
(2117) 5% Euclid 0.86 - 0.87 0.99 0.79 0.71 0.90
cosine 0.99 - 0.85 1 0.86 0.51 0.88
resemblance 0.75 0.71 - - - - -
(876) 1% Euclid 0.81 - 0.83 0.91 0.74 0.68 0.90
cosine 0.95 - 0.81 0.96 0.52 0.51 0.89
resemblance 0.64 0.66 - - - - -
low idf 100% Euclid 0.89 - 0.78 1 0.89 0.81 0.95
(745) cosine 1 - 0.75 1 0.98 0.53 0.96
resemblance 0.97 0.95 - - - - -
(308) 10% Euclid 0.87 - 0.88 0.99 0.84 0.74 0.97
cosine 1 - 0.85 0.99 0.97 0.51 0.97
resemblance 0.92 0.91 - - - - -
(226) 5% Euclid 0.85 - 0.87 0.99 0.79 0.70 0.96
cosine 1 - 0.84 0.99 0.93 0.51 0.97
resemblance 0.89 0.86 - - - - -
(75) 1% Euclid 0.78 - 0.81 0.95 0.57 0.66 0.93
cosine 0.94 - 0.82 0.96 0.67 0.52 0.93
resemblance 0.84 0.79 - - - - -

Table 2: DBLP: Construction cost (secs) vs sample size (signature size: 10).

g-vector min-hash PCA PCAT FCM FCMT IB

g-grams  size

all 100% | 2.84 0.02 23271 025 12.56 108.88 9.67
10% 0.58 0.02 505.35 0.08 3.14 25.37 6.05
5% 0.36 0.02 175.86  0.05 539  1.86  4.86
1% 0.10 0.02 8.97 0.03 0.36 061 217

low idf  100% | 0.13 0.02 10.22  0.03 1.49 811 1.17
10% 0.05 0.02 0.39 0.02 077 059 0.53
5% 0.03 0.02 0.14 0.02 0.69 038 041
1% 0.01 0.02 0.02 0.02 022 008 0.4




Table 3: DBLP: Accuracy vs signature size (sample size: 1%).

min-hash PCA PCAT FCM FCM” 1B
g-grams size measure

all 5 Euclid - 0.88 0.98 0.78 0.68 0.82
cosine - 0.85 0.99 0.51 0.51 0.80

resemblance 0.62 - - - - -
10 Euclid - 0.83 0.91 0.74 0.68 0.90
cosine - 0.81 0.96 0.52 0.51 0.89

resemblance 0.66 - - - - -
20 Euclid - 0.81 0.88 0.81 0.68 0.90
cosine - 0.79 0.99 0.52 0.51 0.97

resemblance 0.64 - - - - -
low idf 5 Euclid - 0.82 0.99 0.79 0.66 0.83
cosine - 0.83 0.98 0.73 0.51 0.83

resemblance 0.79 - - - - -
10 Euclid - 0.81 0.95 0.57 0.66 0.93
cosine - 0.82 0.96 0.67 0.52 0.93

resemblance 0.79 - - - - -
20 Euclid - 0.80 0.95 0.58 0.66 0.86
cosine - 0.82 0.96 0.52 0.51 0.95

resemblance 0.83 - - - - -
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Figure 7: DBLP: Accuracy versus signature size (co-
sine similarity; low idf g-grams)

tures based only on the low idf g-grams, g-vector, min-hash
and FCM have the same behaviour, but PCA and IB exhibit
much smaller deterioration, with more than 84% accuracy
in all cases.

Table 5 shows the signature construction cost as a function
of sample size. Notice that concentrating on low idf g-grams
only reduces costs drastically, while it also helps improve
accuracy. Table 6 shows the accuracy of all signatures as
a function of signature size. In this case, the bigger the
signature size the better the performance, for all algorithms.

Finally, Table 7 presents a scaling experiment for increas-
ing number of attributes. The signature size used is 10
coefficients and the sample size is 0.1%. We show scaling
behaviour both for all and low idf g-grams. As expected,
we can observe the exponential nature of the dimensionality
reduction and clustering algorithms. Nevertheless, PCAT,
FCM and IB scale much better than PCA (which did not
terminate in a reasonable amount of time for more than
100 attributes) and FCM”. Finally, by using only low idf
g-grams we can see that the algorithms scale much better

for a large number of attributes, even on a low-end stand-
alone server. FCM’s performance exhibits some unexpected
behaviour for low idf g-grams and 500 attributes. The algo-
rithm requires a very large number of iterations to converge
in this case on average.

5.4 Remarks

PCAT gives excellent results and is fast to compute for small
n, and when using low idf g-grams only. IB gives compa-
rable results in all cases, especially for small sample sizes.
The exponential nature of these algorithms becomes evident
when scaling to large number of attributes, but restricting
the input space only to low idf g-grams helps reduce the
cost substantially and helps improve accuracy. Neither of
these algorithms can handle incremental updates, although
PCAT can compute outdated signatures for newly arriv-
ing attributes and delay recomputation until a significant
amount of the data changes. When large samples are avail-
able, min-hash signatures will work fairly well in practice,
they are fast to compute and support incremental updates.

6. RELATED WORK

Database research has explored a variety of issues related
to data cleaning in general, including finding duplicate val-
ues, record linkage [16, 18, 24], schema mapping [14, 7, 21],
and finding primary keys and functional dependencies [19].
Work on schema matching is particularly relevant to our
problem, since finding the data type of an attribute can be
thought of as an instance of attribute matching. To the
best of our knowledge, no techniques in schema matching
literature have considered using the g-gram distribution to
identify related fields. Existing work uses three primary ap-
proaches: 1. the presence of common data values; 2. ex-
isting schema information, meta-data, and available domain
knowledge; 3. basic statistics over the data population, like
averages and quantiles, which might work well for numerical
data but will fail to give reasonable results for categorical
data (like IP addresses), or for string values (like business
listings). The first work to consider using data types in



Table 4: BL: Accuracy vs sample size (signature size: 10).

g-vector min-hash PCAT FCM IB

g-grams  size measure
all 1% Euclid 0.85 - 0.98 091 0.86
(8731) cosine 0.97 - 0.98 0.96 0.86
resemblance 0.86 0.84 - - -
(6291) 0.1% Euclid 0.77 - 0.92 0.59 0.74
cosine 0.96 - 0.96 0.47 0.70
resemblance 0.83 0.80 - - -
(2283) 0.01% Euclid 0.57 - 0.72 0.64 0.70
cosine 0.74 - 0.91 0.45 0.54
resemblance 0.58 0.58 - - -
low idf 1% Euclid 0.86 - 0.98 091 0.95
(1693) cosine 0.99 - 0.98 0.98 0.95
resemblance 0.92 0.89 - - -
(1210) 0.1% Euclid 0.79 - 0.94 0.60 0.94
cosine 0.96 - 0.96 0.56 0.94
resemblance 0.80 0.79 - - -
(230) 0.01% Euclid 0.59 - 0.85 0.65 0.89
cosine 0.71 - 0.84 0.45 0.89
resemblance 0.61 0.60 - - -

Table 5: BL: Construction cost (secs) vs sample size (signature size: 10).

min-hash PCAT FCM IB
g-grams  size
all 1% 0.04 0.55  22.61 19.39
0.1% 0.02 0.29 8.05 12.74
0.01% 0.02 0.06 1.52 1.97
low idf 1% 0.02 0.06 3.69 3.1
0.1% 0.02 0.04 3.28 281
0.01% 0.02 0.02 0.21  0.60

Table 6: BL: Accuracy vs signature size (sample size: 0.1%).

min-hash PCAT FCM IB
g-grams size measure
all 5 Euclid - 0.98 0.59 0.65
cosine - 0.99 0.47 0.63
resemblance 0.76 - - -
10 Euclid - 0.92 0.59 0.74
cosine - 0.96 0.47 0.70
resemblance 0.80 - - -
20 Euclid - 0.91 0.54 0.73
cosine - 0.95 047 0.71
resemblance 0.83 - - -
low idf 5 Euclid - 0.99 0.68 0.77
cosine - 0.98 0.57 0.76
resemblance 0.76 - - -
10 Euclid - 0.94 0.60 0.94
cosine - 0.96 0.56 0.94
resemblance 0.79 - - -
20 Euclid - 0.93 0.45 0.93
cosine - 0.95 0.47 1
resemblance 0.80 - - -




Table 7: BL: Construction cost (secs) vs number of attributes (signature size: 10, sample size 0.1%).

min-hash ~ PCA  PCAT FCM FCM” 1B

g-grams attributes

all 100 0.06 68199.4  3.72 32.31 50.02 18.58
200 0.11 - 15.89  71.33 53.02 52.52
300 0.13 - 36.84  95.62 76.22 96.06
400 0.17 - 68.91 13145 1183.38 126.30
500 0.20 - 118.45 144.42 2143.85 141.17

low idf 100 0.02 598.45 0.42 9.42 9.61 6.03
200 0.03 3158.37  4.00 27.03 24.59 17.17
300 0.03 - 8.74 46.88 47.72 31.02
400 0.05 - 24.91 73.50 65.81 32.83
500 0.08 - 41.78 321.56 100.39  58.55

a schema matching context is [12], where the authors con-
struct signatures for validating rather than inferring schema
matches. That work concentrates on information theoretic
principles only (using IB). In the present work we consider
a wider range of approaches. In that respect, the techniques
presented here could prove useful in schema matching appli-
cations, and exploring this direction is left as future work.

Even though the focus has not been on type-based catego-
rization of attributes, the problem of identifying fields con-
taining similar data has been tackled before. In [13] the
authors deal with databases that get disordered over time
making it hard to understand the structure and the data
contained therein. Disorder arises due to incomplete or miss-
ing documentation and meta-data, incremental changes to
the database to model new structure, integration of multi-
ple heterogeneous data sources, or simply lack of effort to
correctly model the input data. The authors propose a data
mining tool called Bellman for mining the structure of the
database. They build various statistical summaries for de-
termining keys in a table, finding heterogenous tables, find-
ing (approximate) join paths between fields of different ta-
bles, and finding for the set of values of a given field another
field that is textually similar or likely to be a subset of the
first field. The authors also use min-hash [8, 5] for estimat-
ing attribute resemblance and g-gram sketches for substring
similarity. Our work can be seen as a direct extension of
Bellman for identifying the data type of attributes.

Another approach addressing the problem of finding similar
columns can be found in [9]. The authors develop algorithms
based on theory from association rule mining. They intro-
duce hash-based signature schemes based on min-hash and
Locality Sensitive Hashing (LSH) [17]. Locality-Sensitive
Hashing (LSH) is a hashing based approach for efficient
nearest-neighbour search in high dimensional spaces. The
hashing functions are chosen in a way that the probability
for a collision is higher for similar objects than for dissimilar
ones. The goal is to distribute the objects into the differ-
ent buckets such that similar objects are grouped together,
i.e., located in the same or neighbouring buckets. The tech-
niques focused on finding similar attributes that have sig-
nificant data overlap. In our setting, if we view g-grams
as transactions and the attributes we want to cluster cor-
respond to itemsets, then this technique can be adapted to
our problem. However, these signatures only work with 0
and 1 values, i.e., whether a g-gram appears in an attribute

or not. In the case of relational attributes, two columns of
different type might have a common character set and hence
similar signatures. As already mentioned disregarding the
g-gram distribution will hurt accuracy significantly.

The g-gram distribution has been shown to give information
about the language of the text, the underlying topic and
even authorship [2, 22]. Word clusters have also been used
for document categorization purposes [3, 26]. For example,
in [26] the authors propose a double clustering technique
for clustering similar documents. First, an agglomerative
information bottleneck method is used to derive word clus-
ters from the corpus of documents. Then, each document
is represented as a distribution of word clusters. Finally, a
subsequent clustering step (using any hard clustering algo-
rithm) is performed to cluster the documents using the new
representation. This approach is shown to produce better
quality results than existing clustering algorithms on a pre-
labeled dataset. The authors claim that representing doc-
uments as word clusters reduces the inevitable noise that
exists in the document-word co-occurrence matrix that has
very high dimensionality, similarly to the attribute-q-gram
co-occurrence matrix in our scenario.

7. CONCLUSION

We analyzed and compared a variety of techniques that can
be used for producing signatures for type-based similarity.
We argue and show experimentally that the underlying q-
gram distribution of a relational attribute forms a good qual-
ity type-based signature. If a large sample of the data at-
tributes is available, then a simple min-hash scheme gives
very good results. On the other hand, when only very small
samples are available, then global strategies that compute
signatures based on correlations between attributes are nec-
essary for improving classification accuracy. Of course, the
drawback of such techniques is that they cannot handle up-
dates efficiently. In our evaluation we considered one rep-
resentative algorithm from each general class of relevant al-
gorithms, namely dimensionality reduction, soft-clustering
based on partitioning, and soft-clustering based on informa-
tion theoretic principles. In the future, we plan to test the
utility of these signatures in a variety of applications, like
schema matching and index optimization and compression.
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