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Abstract. Practical applications often need to rank multi-variate records by as-
signing various priorities to different attributes. Consider a relation that stores
students’ grades on two courses: database and algorithm. Student performance is
evaluated by an “overall score” calculated as w1 ·gdb+w2 ·galg , where w1, w2 are
two input “weights”, and gdb (galg) is the student grade on database (algorithm).
A “top-k ranked query” retrieves the k students with the best scores according to
specific w1 and w2.

We focus on top-k queries whose k is bounded by a constant c, and present
solutions that guarantee low worst-case query cost by using provably the min-
imum space. The core of our methods is a novel concept, “minimum cov-
ering subset”, which contains only the necessary data for ensuring correct
answers for all queries. Any 2D ranked search, for example, can be processed
in O(logB(m/B)+ c/B) I/Os using O(m/B) space, where m is the size of the
minimum covering subset, and B the disk page capacity. Similar results are also
derived for higher dimensionalities and approximate ranked retrieval.

1 Introduction

Practical applications often need to rank multi-variate records by assigning various
priorities to different attributes. Consider a relation that stores students’ grades on
two courses: database and algorithm. Student performance is evaluated by an “over-
all score” calculated as w1 · gdb + w2 · galg , where w1, w2 are two input “weights”,
and gdb (galg) is the student’s grade on database (algorithm). A common operation
is to retrieve the best k students according to specific weights. For example, a top-k
search with w1 = 1 and w2 = 0 returns students with the highest database grades,
while a query with w1 = w2 = 0.5 selects students by the sum of their grades on the
two courses. In this paper, we consider supporting ranked queries with low worst-case
overhead for all user-defined weights.

1.1 Problem Statements

Consider a d-dimensional space, where each axis has a domain [0, ∞). A weight vector
w = {w[1], w[2], ..., w[d]} specifies a positive weight w[i] on each dimension 1 ≤ i ≤
d. Given such a vector w, the score of a point p in the data space equals

∑d
i=1(w[i]·p[i]),

where p[i] is the coordinate of p on the i-th axis (1 ≤ i ≤ d).
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Problem 1. Let D be a set of d-dimensional points. Given a weight vector w, a top-k
ranked query returns the k points from D with the highest scores. Let c be a constant
(by far) smaller than the cardinality of D. The goal is to minimize the worst-case cost
of processing any top-k query with k ≤ c.

The motivation behind introducing the constant c is that a typical query in practice aims
at finding only the “best-few” objects [11], e.g., the 10 best students from the whole
university with a huge student population.

Many applications accept approximate answers with low (bounded) error, especially
if computing such results requires less (time and space) overhead than the precise ones.
Hence, we also consider a novel variation of ranked retrieval, called “top-(k,K) search”.
For example, a top-(1,10) query reports a single point whose score is at most the 10-th
largest in the dataset D. Hence, the query result is not unique, since it can be any of
the objects whose scores are the 1st, 2nd, ..., 10th highest in D. However, the quality of
the result is guaranteed — in the worst case, the retrieved point is the “10-th best” in
D. Similarly, a legal outcome of a top-(3,10) query may consist of any 3 points in the
top-10 set, and therefore, the number of permissible results equals (103 ). We are ready
to define the second problem tackled in this paper.

Problem 2. A top-(k,K) ranked query specifies a weight vector w, and two integers k,
K with k ≤ K . The query result includes any k objects in the top-K set for w. Let c
and C be two constants (by far) smaller than the dataset cardinality, and c ≤ C. The
goal is to minimize the worst-case cost of any top-(k,C) query with k ≤ c.

1.2 Previous Results

While Problem 1 has received considerable attention [10][4][5][7][8][9][11] in the data-
base literature, the previous approaches mostly rely on heuristics which have poor
worst-case performance. In particular, they require accessing the entire database to an-
swer a single query [10][4][5][7], or consume space several times the dataset size [8][9].

The only exception is due to Tsaparas et al [11]. They propose an index that occupies
O(c2 · s/B) space and answers a 2D ranked query in O(logB(s/B) + logB(c) + c/B)
I/Os, where c is as defined in Problem 1, s is the size of the “c-skyline” of the dataset,
and B is the disk page capacity. Specifically, a c-skyline consists of the objects that are
not dominated by c other objects (an object p dominates another p′ if the coordinates of
p are larger on all dimensions). In the dataset of Figure 1, a 1-skyline contains p2, p3,
p7, p4, p5. Point p1, for example, is not in the skyline because it is dominated by p3.

The solutions of [11] are not applicable to higher dimensionalities. To the best of our
knowledge, no previous results on Problem 2 exist.

1.3 Our Results

Any method that correctly solves Problem 1 must store a minimum covering subset,
which is the result union of all the possible (an infinite number of) ranked queries with
k ≤ c. For example, in Figure 1, as clarified later the minimum covering subset for
c = 1 contains p2, p3, p4, p5 — the top-1 object for any weight vector must be captured
in this subset. Note that, the subset is smaller than the 1-skyline which, as mentioned
earlier, also includes p7 and p6.
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Fig. 1. An example

We propose polynomial-time algorithms for extracting minimum covering subsets
in arbitrary dimensionalities. Notice that the discovery of such a subset immediately
improves the worst-case behavior of any previous approaches. In particular, instead of
applying a technique on the original dataset, we can deploy it on the minimum subset
directly. Hence, any ranked query can be processed without considering other data not
in the subset.

As a second step, we pre-process them into appropriate structures for performing
ranked retrieval effectively. Specifically, any 2D ranked query can be answered in
O(logB (m/B) + c/B) I/Os using O(m/B) space, where m is the size of the min-
imum covering subset. These bounds significantly improve those of [11]. For higher
dimensionalities, a query can be solved in O(m/B) I/Os by storing O(m/B) infor-
mation. Note that our methods in both scenarios require asymptotically the smallest
amount O(m/B) of space.

For Problem 2, there also exists a corresponding “minimum subset” containing the
necessary data for ensuring correct results for all queries. If this subset has size m,
we develop an index that occupies O(m′/B) space, and processes an approximate 2D
ranked query in O(logB(m′/B)+c/B) I/Os, where m′ is bounded by (ln m+1)·m. In
higher-dimensional space, a query can be answered in O(m′/B) I/Os with O(m′/B)
space.

The rest of the paper is organized as follows. Section 2 elaborates the definition of
minimum covering subsets, and Section 3 discusses their computation in arbitrary di-
mensionality. Section 4 explains an “incremental” approach for deriving minimum cov-
ering subsets. Section 5 presents an index structure that optimizes exact ranked search,
while Section 6 discusses approximate retrieval. Section 7 concludes the paper with
directions for future work.

2 Minimum Covering Subsets

Let D⊆ be a subset of D. We say that D⊆ covers an exact top-k query if D⊆ contains
all the k points in its result. Given a constant c, D⊆ is a c-covering subset if it
covers all possible top-k queries whose k is at most c. For instance, a “1-covering
subset” includes the results of all top-1 queries, regardless of their weight vectors,
while a “3-covering subset” covers all top-1, top-2, and top-3 queries. Among all the
c-covering subsets, the one with the smallest size is called the minimum c-covering
subset, represented as minD⊆.
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As an example, consider a 1D dataset D with 10 records {1, 2, ..., 10}. Accordingly, a
weight vector contains a single number w. A top-k query reports the k tuples p ∈ D that
maximize w ·p. Clearly, the result simply consists of the k largest numbers in D. Indeed,
when the dimensionality equals 1, all top-k queries with the same k produce identical
results, independent of w. Therefore, for any integer c, the minimum c-covering subset
minD⊆ includes the c largest tuples. For instance, for c = 1, minD⊆ = {10}, and for
c = 2, minD⊆ = {10, 9}, etc. Note that {10, 9} is also a 1-covering subset, but not a
minimal one.

The importance of minD⊆ lies in the fact that it can replace the original dataset D to
correctly answer any top-k query, as long as the parameter k is not larger than c. This re-
placement significantly reduces the space consumption because, even if the cardinality
of D is huge, minD⊆ may contain only a small number of points. Furthermore, notice
that minD⊆ must be stored by any technique that aims at providing correct results to
all top-k queries. Hence, the size of minD⊆ corresponds to the lower bound for the
space consumption of ranked retrieval.

As stated in Problem 2, a top-(k,K) query returns k points in the top-K set for w. As
mentioned in Section 1.1, the result is not unique — since any k objects in the top-K
set forms a “legal” result, the number of possible results equals (K

k ). Given a subset D⊆
of the dataset D, we say that D⊆ covers a top-(k,K) query, if there exist k points in
D⊆ that constitute one of the (K

k ) legal results. We define the (c,C)-covering subset to
be a subset of D that covers all top-(k,K) queries with k ≤ c and K = C. The (c,C)-
covering subset with the smallest size is the minimum (c,C)-covering subset minD∗

⊆,
where the asterisk differentiates it from the notation minD⊆ of a minimum c-covering
subset.

We illustrate these concepts using again a 1D dataset D storing data 1, 2, ..., 10. A
possible minimum (1,5)-covering subset of D can involve a single tuple {6}. Indeed,
for any top-(1,5) query, the tuple 6 is always a legal result since it is in the top-5 set. In
fact, a minimum (1,5)-covering subset can involve any single record chosen from {6,
7, 8, 9, 10}. Similarly, a minimum (3,5)-covering subset can be {6, 7, 8}, or in general,
any subset of {6, 7, 8, 9, 10} with 3 elements.

The minimum (c,C)-covering subset minD∗
⊆ can substitute the original database D

to support top-(k,C) ranked search whose parameter k is at most c. Next, we discuss
the computation of minimum c-covering subsets, while (c,C)-covering subsets are the
topic of Section 6.

3 Finding Minimum C-Covering Subsets

In this section, we analyze extracting the minimum c-covering subset in arbitrary di-
mensionality. Section 3.1 first presents some fundamental results, based on which Sec-
tion 3.2 elaborates the concrete algorithms.

3.1 Basic Results

Lemma 1. Let D be a set of multi-dimensional points, and D⊆ be a subset of D. If D⊆
covers all top-c queries on D, then it also covers all top-k queries, for any 1 ≤ k ≤ c.
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The lemma has an important corollary:

Corollary 1. The minimum c-covering subset minD⊆ of D is the union of the results
of all (exact) top-c queries.

Hence, the computation of minD⊆ would be simple if we were able to execute an in-
finite number of top-c queries with all possible weight vectors w. In the sequel, we
present polynomial-time approaches based on several inherent connections between
minD⊆ and the “positive convex hull” PCH of dataset D. To formally define PCH,
let us formulate a set D′, which contains all the objects from D, together with d + 1
“dummy” points. The first one is the origin of the data space, and there is also a dummy
point on each dimension, whose coordinate on this dimension equals the maximum co-
ordinate of the points in D on this axis, and 0 on the others. All the d + 1 dummy
records must appear in the convex hull of D′. The positive convex hull PCH of the
original dataset D includes the non-dummy points in the convex hull of D′.

Figure 1 illustrates an example whereDcontains 8 pointsp1, p2, ..., p8. The augmented
dataset D′ involves 3 dummy points represented as white dots. The convex hull of D′

contains all the dummy points, together with p2, p3, p4, and p5. Hence, the positive convex
hull PCH of D consists of p2, p3, p4, and p5. Clearly, the time needed to compute the
PCH of any dataset D is bounded by the cost of obtaining a complete convex hull of D.

It is known [4] that the result of any top-1 query on D can be found in the PCH of
D, namely:

Lemma 2. The minimum 1-covering subset of D is the positive convex hull of D.

It is natural to wonder whether this lemma can be trivially extended to capture minimum
c-covering subsets for arbitrary c. Specifically, should the minimum 2-covering subset
of D be the union of PCH(D) and PCH(D − PCH(D))? That is, can we obtain the
minimum 2-covering subset by combining the minimum 1-covering subset, and the
positive convex hull of the remaining data of D after excluding the points in PCH(D)
(this corresponds to the Onion technique in [4])? Unfortunately, the answer is negative.
For example, in Figure 1, PCH(D) equals {p2, p3, p4, p5}. After removing PCH(D),
the positive convex hull of the remaining objects consists of p1, p7, p6. However, as
clarified in the next section, the minimum 2-covering subset of D has the same content
as the minimum 1-covering subset.

3.2 Algorithm for Arbitrary Dimensionality

We prove a reduction that transforms the problem of discovering minimum c-covering
subsets minD⊆ to finding positive convex hulls. As a result, minD⊆ can be obtained
using any existing algorithm [3] for computing convex hulls. Given a value c and
dataset D, we represent the minimum c-covering subset as minD⊆(c, D). According
to Lemma 2, minD⊆(1, D) is equivalent to PCH(D).

Theorem 1. For any c ≥ 2, a minimum c-covering subset can be computed in a recur-
sive manner:

minD⊆(c, D) = PCH(D)
⋃

⎛

⎝
⋃

∀p∈PCH(D)

minD⊆(c − 1, D − {p})

⎞

⎠ (1)
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Algorithm find-minD (c, D)
1. if c = 1
2. return PCH(D) //using any convex-hull method
3. else
4. S = PCH(D)
5. for each point p ∈ PCH(D)
6. S = S∪ find-minD (c − 1, D − {p})
7. return S

Fig. 2. Finding minD⊆(c, D) in any dimensionality

Based on Theorem 1, Figure 2 describes the algorithm find-minD for retrieving
minD⊆(c, D) in any dimensionality. We illustrate the idea of find-minD by using it
to find the minimum-2-covering subset on the dataset D in Figure 1. First, find-minD
invokes the selected convex-hull algorithm to extract PCH(D) = {p2, p3, p4, p5}, i.e.,
the content of minD⊆(1, D). All the points in this set must belong to minD⊆(2, D).
To find the other objects in minD⊆(2, D), find-minD removes a point, say p2, from
D, and computes the PCH of the remaining data. The result of this computation is
PCH(D − {p2}) = {p3, p4, p5}. Next, minD⊆(2, D) is updated to the union of its
current content and PCH(D − {p2}), which incurs no change to minD⊆(2, D). Find-
minD performs the above operations with respect to every other point p3, p4, and p5
of PCH(D) in turn. Namely, for each i = 3, 4, 5, it obtains PCH(D − {pi}), and
updates minD⊆(2, D) by union-ing it with PCH(D − {pi}). It can be easily verified
that no modification to minD⊆(2, D) happens, leaving the final result minD⊆(2, D) =
{p2, p3, p4, p5}, that is, same as PCH(D).

Note that find-minD needs to compute the positive convex hull PCH of several dif-
ferent datasets. For example, in our earlier example of computing minD⊆(2, D) in
Figure 1, we calculated the PCH of D, and D − {pi} for each integer i in the range
2 ≤ i ≤ 5. Hence, we have:

Theorem 2. Let α be the highest cost of each PCH computation in find-minD (line 4),
and β be the maximum number of PCH points retrieved in each execution of line 4.
Then, the cost of find-minD is O(α · βc−1).

The factor α in Theorem 2 corresponds to the efficiency of the algorithm used by find-
minD to compute PCH.

Thus, a direct corollary of the theorem is:

Corollary 2. The execution time of find-minD is worse than that of the deployed algo-
rithm for computing convex hulls by at most a polynomial factor βc−1.

Notice that β is O(|D|) (the database cardinality) in the worst case. This happens in the
very rare case where almost all the points in D belong to the positive convex hull. For
practical datasets, β is fairly small. For instance, for uniform data, β is at the order of
(ln |D|)d−1/(d−1)! [2], where d is the dimensionality of the dataset. For anti-correlated
data (where most points lie around the major diagonal of the data space), β is expected
to be a constant. In this case, find-minD is asymptotically as fast as computing the
convex hull.
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4 Incremental Computation of minD⊆

Before computing the minimum c-covering subset minD⊆, the algorithm in Figure 2
requires that the value of c should be known in advance. In the sequel, we present an al-
ternative method that obtains the minD⊆ in a faster “incremental” manner. Specifically,
it first finds the minimum 1-covering subset, which is used to discover the 2-covering
subset, then the 3-covering, and so on. Our discussion focuses on 2D space in this sec-
tion, while the extension to higher dimensionalities is presented Section 5.2.

4.1 Slope Space and Its Decomposition

Given a 2D weight vector w = {w[1], w[2]}, we refer to w[2]
w[1] as the weight slope λ.

Clearly, λ ranges in the slope space [0, ∞). The following lemma is proved in [11]:

Lemma 3. For an arbitrary integer k, top-k queries with the same weight slope λ re-
turn identical results. In particular, if we project each data point onto a ray shot from
the origin with slope λ, the query result consists of the k objects whose projected points
are the farthest from the origin.

For example, the top-k objects produced by a query with weight vector {10, 20} are
the same as those reported by a query with weight vector {1, 2} — both queries have a
weight slope 2. Figure 3 shows a dataset that contains 3 data points p1, p2, and p3. Ray l
has a slope 2, and the projection of point pi onto l is p′i for each integer i ∈ [1, 3]. Since
p′1 (p′2) is the farthest (2nd farthest) from the origin among the 3 projections, object p1
(p2) has the highest (2nd highest) score for the weight slope 2.

In the sequel we characterize a top-k query by the value of k and its weight slope λ.
By Corollary 1, minD⊆(c, D) corresponds to the union of the results of top-c queries
for all λ ∈ [0, ∞). Imagine that we slowly increase λ from 0, and meanwhile contin-
uously monitor the corresponding top-c set. Since the size of minD⊆(c, D) is finite,
there can be only a finite number of top-c changes as λ travels from 0 to ∞. Therefore,
we can decompose the slope space [0, ∞) into a set of disjoint intervals such that the
results are identical for those queries whose weight slopes are in the same interval.

We call the set HD of intervals thus obtained the top-c homogeneous decomposition
of the slope space. The size of HD equals the total number of times the top-c objects
incur a “change” as λ grows from 0 to ∞. A change here means that a data point is

p1

p2

p3

y

xslope 2

p1'p2'

p3'

l

Fig. 3. Deciding score relationship from projections on l
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removed from the current top-c set, and another point is added. Note that, no change is
generated if only the scores of the existing top-c points switch their relative order. For
instance, assume that the top-2 result for the current λ contains p1, p2, and the score of
p1 is higher. As λ increases to some value, the score of p2 becomes larger, but p1, p2
still have the 2 largest scores among all the data points. This is not counted as a result
change.

4.2 Computing Top-1 Homogeneous Decomposition

Let I = [I�, I�) be an interval in HD, where I� (I�) is the starting (ending) slope
of I . For any weight slope in [I�, I�), the top-c set is the same, and is represented as
I.S. To compute the top-1 homogeneous decomposition, we first obtain the minimum
1-covering subset minD⊆(1, D) (i.e., the positive convex hull PCH of D). Assume,
without loss of generality, that the PCH contains m points p1, p2, ..., pm sorted in
descending order of their x-coordinates, where m is the size of PCH. By the definition
of the PCH, if we start from p1 and walk on the hull boundary (passing vertices p2,
..., pm in this order), we will make a left turn every time a vertex is encountered. This
implies that the slopes of hull edges monotonically decrease in the order that we walk
through them. Figure 4 shows an example where the PCH contains 4 points p1, ..., p4.
The slope of edge p1p2 is larger than that of p2p3 (note that both slopes are negative),
which in turn is greater than the slope of p3p4.

Let us shoot a ray li from the origin of the data space, vertically to the hull boundary
pipi+1 for each i ∈ [1, m − 1]. The slopes of the m − 1 rays l1, l2, ..., lm−1 must
increase monotonically. For example, in Figure 4 where m = 3, we obtain 3 rays l1, l2,
and l3. Since the edge p1p2 has a larger slope than p2p3, the slope of l1 is smaller than
that of l2. This can be verified easily with the fact that the product of the slopes of two
mutually orthogonal lines equals −1. Similarly, l2 has a smaller slope than l3.

Lemma 4. Assume that the positive convex hull of D contains m points p1, p2, ..., pm,
sorted in descending order of their x-coordinates. Let i be any integer in the range
[1, m − 1], and x be the slope of the ray shot from the origin perpendicular to the
segment connecting pi and pi+1. Then, pi has a larger score than pi+1 for any weight
slope in [0, x), while pi+1 has a higher score for any weight slope in (x, ∞).

For example, let λ1 be the slope of l1 in Figure 4. The score of p1 is larger than that of
p2 (for any weight slope) in the range [0, λ1), while p2 has a greater score than p1 in
(λ1, ∞). Similarly, if the slope of l2 is λ2, the score of p2 is larger than that of p3 for
any weight slope smaller than λ2, while p3 has a higher score for slopes larger than λ2.
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Fig. 4. Top-1 homogeneous decomposition
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Based on Lemma 4, the top-1 homogeneous decomposition HD can be decided as
follows. Given PCH = {p1, ..., pm} and m − 1 rays l1, ..., lm−1 as described earlier,
the first interval I1 in HD is [I1�, I1�), where I1� = 0, and I1� equals the slope of l1.
The second interval I2 starts at I1�, and terminates at the slope of ray l2, and so on.
The last interval Im starts at the slope of Im−1, and ends at ∞. The top-1 object for all
weight slopes in interval Ii (1 ≤ i ≤ m) is point pi, i.e., Ii.S = {pi}.

Lemma 5. Assume that the positive convex hull of D contains m points p1, p2, ...,
pm, sorted in descending order of their x-coordinates. θ1, θ2 are two arbitrary weight
slopes, and θ1 < θ2. Let pi (pj) be the top-1 object for slope θ1 (θ2). Then, the union of
top-1 objects for all weight slopes in [θ1, θ2] equals {pi, pi+1, ..., pj}.

For example, let θ1 (θ2) be the slope of the ray l′1 (l′2) in Figure 4. Point p1 (p3) is
the object that has the largest score at θ1 (θ2). Then, for any weight slope in the range
[θ1, θ2], the top-1 object must be found in the set {p1, p2, p3}.

4.3 Computing Top-k Homogeneous Decomposition

The subsequent analysis shows that the top-(k+1) homogeneous decomposition
HD(k + 1, D) can be derived efficiently from the top-k counterpart HD(k, D).

Tail Sets. Consider an arbitrary interval I = [I�, I�) ∈ HD(k, D). I.S contains k
points (in D) with the highest scores for any weight slope in [I�, I�). To derive HD(k+
1, D), we need to decide the union of the top-(k + 1) objects produced by all weight
slopes in [I�, I�). Let (D − I.S) be the set of points in D after excluding those in
I.S. We define p′� (p′�) to be the object in (D − I.S) that has the largest score for the
weight slope I� (I�). By Lemma 2, both p′� and p′� appear on the positive convex hull
of (D − I.S). Then, the tail set I.TS of I contains the vertices of this hull between (but
including) p′� and p′�.

Figure 5a shows an example where the black dots represent the data points in D.
Assume an interval I ∈ HD(k, D) whose starting value I� (ending value I�) equals the
slope of ray l� (l�). Objects p1, p2, ..., pk are in the top-k set I.S for all weight slopes in
[I�, I�) (p3, ..., pk−1 are omitted from the figure). Point p′� (p′�) is the object that has the
highest score at weight slope I� (I�) among the data in (D − I.S). Objects p′�, p′2, p′3,
p′� are the vertices between p′� and p′� on the positive convex hull of (D − I.S); hence,
they constitute the tail set I.TS of I . According to the following lemma, the result of
any top-(k+1) query with weight slope in [I�, I�) must be included in the union of I.S
and {p′�, p′2, p′3, p′�}.

Lemma 6. Let I be an arbitrary interval in the top-k homogeneous decomposition
HD(k, D). The union of the top-(k+1) objects for weight slopes in [I�, I�) equals I.S∪
I.TS, where I.S is the top-k set in [I�, I�), and I.TS the tail set of I .

An important step in extracting the tail set of I is to identify points p′� and p′�, which
are the top-1 objects in (D − I.S) at slopes I� and I�, respectively. Both points can be
efficiently obtained as follows. First, we sort all the intervals in the top-k homogeneous
decomposition HD(k, D) in ascending order of their starting slopes. To decide p′� (p′�),
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Fig. 5. The tail set and its application

we check whether I is the first (last) interval in the sorted list. If the answer is positive,
p′� (p′�) corresponds to the point in D with the (k+1)-st largest x- (y-) coordinate. Oth-
erwise, we take the interval I ′ that ranks just before (after) I in the sorted list. By the
definition of HD(k, D) (see Section 4.1), I ′.S involves one object that is not in I.S,
i.e., the top-k result change at the boundary between I and I ′. Then, p′� (p′�) is set to
this object. Figure 6 shows the formal procedures of computing the tail set.

After computing the tail sets of all intervals in HD(k, D), we can obtain the mini-
mum (k+1)-covering subset of the dataset D immediately:

Theorem 3. Given the top-k homogeneous decomposition HD(k, D), the minimum
(k+1)-covering subset can be decided as:

minD⊆(k + 1, D) =

�
� �

I∈HD(k,D)

I.S ∪ I.TS

�
� (2)

Computing HD(k + 1, D). Next we clarify the derivation of HD(k + 1, D) from the
tail sets of the intervals in HD(k, D). Before presenting the detailed algorithm, we
first discuss the general idea using a concrete example in Figure 5b, which is based on
Figure 5a. As mentioned earlier, I = [I�, I�) is an interval in HD(k, D), where I� (I�)
equals the slope of ray l� (l�). The tail set I.TS consists of points p′1, p′2, ..., p′4, sorted
in descending order of their x-coordinates (note that p′1 and p′4 are equivalent to p′� and
p′� in Figure 5a, respectively). For each segment p′ip

′
i+1 (1 ≤ i ≤ 3), we shoot a ray li

from the origin perpendicularly to it. The slope of λi of li must be larger than I� and
but smaller than I� (note that l lies between l� and l�). The 3 numbers λ1, λ2, and λ3
divide [I�, I�) into 4 pieces with different top-(k+1) results. To facilitate illustration,
let us denote λ0 = I� and λ4 = I�. Then, for i ∈ [0, 3], the top-(k+1) set contains p′i
and the objects in I.S at any weight slope in [λi, λi+1). Recall that I.S = {p1, ..., pk}
is the top-k result at any weight slope in I .

Formally, given an interval I ∈ HD(k, D), the algorithm break-interval in Figure 7
divides I into a set HD(I) of disjoint pieces. Each interval I ′ ∈ HD(I) is associated
with a set I ′.S that is the top-(k+1) result for any weight slope in I ′. In order to obtain
HD(k+1, D), we execute break-interval for every interval I ∈ HD(k, D), after which
HD(k + 1, D) corresponds to the union of all HD(I) produced.

There is one minor detail worth mentioning. As will be shown in an example, the
HD(k + 1, D) thus decided may contain multiple intervals I whose associated top-
(k+1) sets I.S are the same. These intervals should be combined into a single one
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Algorithm tail-set (I , HD(k, D))
/* I is an interval in HD(k, D), whose intervals have been sorted
by their starting values */
1. if I� = 0 //I is the first interval in HD(k, D)
2. p′

� = the point in D with the (k+1)-st highest x-coordinate
3. else
4. I ′ = the interval that ranks before I in HD(k, D)
5. p′

� = I ′.S − I.S
6. if I� = ∞ //I is the last interval in HD(k, D)
7. p′

� = the point in D with the (k+1)-st highest y-coordinate
8. else
9. I ′ = the interval that ranks after I in HD(k, D)
10. p′

� = I ′.S − I.S
11. I.TS = the set of vertices between (including) p′

� and p′
� on

the convex hull of D − I.S

Fig. 6. Algorithm for computing the tail set

Algorithm break-interval (I , I.S, I.TS)
/* I is an interval in HD(k, D); I.S is the top-k set at any
weight slope in I ; I.TS is the tail set of I */
1. θlast = I�; HD(I) = ∅; m = number of points in I.TS
2. sort the points in I.TS in descending order of their

x-coordinates; let the sorted order be {p′
1, p′

2, ..., p′
m}

3. for i = 1 to m − 1
4. shoot a ray from the origin perpendicularly to the

segment connecting p′
i and p′

i+1

5. λ = the slope of the ray
6. create an interval Ii = [Ii�, Ii�) with Ii� = θlast,

Ii� = λ, and Ii.S = p′
i ∪ I.S

7. HD(I) = HD(I) ∪ {Ii} , and θlast = λ
8. add to HD(I) Im = [θlast, I�) with Im.S = p′

m ∪ I.S
9. return HD(I)

Fig. 7. Algorithm for breaking an interval in HD(k, D) into ones in HD(k + 1, D)

which spans all their respective slope ranges. This duplicate-removal process, as well
as the overall algorithm for computing HD(k + 1, D) is shown in Figure 8.

An Example. Consider Figure 9, where p1 and p2 are the vertices on the positive
convex hull of a dataset D. Hence, they constitute the minimum 1-covering subset
minD⊆(1, D). Let λ1 be the slope of ray l1, which passes the origin and is vertical
to segment p1p2. The top-1 homogeneous decomposition HD(1, D) contains two in-
tervals I1 = [0, λ1) and I2 = [λ1, ∞). The top-1 object (for any weight slope) in I1 is
I1.S = {p1}, and that in I2 is I2.S = {p2}.

Next we compute minD⊆(2, D) and HD(2, D), by considering each interval of
HD(1, D) in turn. For the first interval I1 = [0, λ1), its tail set I1.TS consists of points
p4 and p1. Accordingly, the algorithm break-interval in Figure 7 divides I1 into two
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Algorithm ho-decomp (HD(k, D))
1. minD⊆(k + 1, D) = ∅; HD(k + 1, D) = ∅
2. assume that HD(k, D) contains m intervals I1, ..., Im

sorted in ascending order of their starting values
3. for i = 1 to m
4. I.TS = tail-set (Ii, HD(k, D))
5. minD⊆(k + 1, D)∪ = I.S ∪ I.TS
6. HD(k + 1, D)∪ = break-interval (I , I.S, I.TS)
7. HD(k + 1, D) = remove-duplicate (HD(k + 1, D))
8. return HD(k + 1, D)
Algorithm remove-duplicate (HD(k + 1, D))
//assume that HD(k + 1, D) contains m′ intervals I ′

1, ..., I ′
m′

1. δHD− = δHD+ = ∅
2. sort all intervals in HD(k + 1, D) in ascending order

of their starting slopes;
3. i = 1
4. while i ≤ m − 1
5. j = the largest integer s.t. I ′

i.S = I ′
i+1.S = ... = I ′

j .S
6. add I ′

i , I ′
i+1, ..., I ′

j into δHD−
7. create a new interval I = ∪j

x=iI
′
x with I.S = I ′

i.S
8. i = j + 1
9. HD(k + 1, D) = HD(k + 1, D) − (δHD−) ∪ (δHD+)

Fig. 8. Algorithm for computing HD(k + 1, D)

p
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p
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Fig. 9. Illustration of the algorithm in Figure 8

intervals I ′1 = [0, λ2) and I ′2 = [λ2, λ1), where λ2 is the slope of ray l2 perpendicular
to segment p1p4. The top-2 result in I ′1 (I ′2) is I ′1.S = {p2, p4} (I ′2.S = {p2, p1}). Let
HD(I1) be the set {I ′1, I ′2}.

Similarly, we examine the second interval I2 = [λ1, ∞) of HD(1, D). Its tail set
I2.TS includes objects p2, p3. Break-interval divides I2 at the slope λ3 of ray l3 or-
thogonal to segment p2p3. Specifically, I2 is broken into HD(I2) = {I ′3, I ′4}, where
I ′3 = [λ1, λ3) and I ′4 = [λ3, ∞). The top-2 result in I ′3 is I ′3.S = {p2, p1}, and that in
I ′4 is I ′4.S = {p3, p1}.

Theorem 3 shows that the minimum 2-covering subset involves all the data in
Figure 9, which equals the union of I1.S, I1.TS, I2.TS and I2.TS. Furthermore,
by merging HD(I1) and HD(I2), we obtain a top-2 homogeneous decomposition
HD(2, D) with 4 intervals I ′1, ..., I ′4. The top-2 results in I ′2 and I ′3, however, are both
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{p2, p1}. Therefore, algorithm remove-duplicate in Figure 8 combines these two in-
tervals into one I ′5 = I ′2 ∪ I ′3 = [λ2, λ3), with I ′5.S = {p2, p1}. Therefore, the final
HD(2, D) involves only 3 elements: I ′1, I ′5, and I ′3.

4.4 Analysis

The subsequent discussion aims at bounding (i) the size of the top-c homogeneous
decomposition HD(c, D), and (ii) the time of computing HD(c, D). We have:

Theorem 4. The number of intervals in the top-c homogeneous decomposition
HD(c, D) is asymptotically the same as the number of points in the corresponding
minimum c-covering subset minD⊆(c, D).

Now we analyze the cost of computing top-c homogeneous decompositions.

Theorem 5. Let α be the time of computing the convex hull of D, and αi the highest
cost of computing the tail set of an interval in HD(i, D) (2 ≤ i ≤ c). HD(c, D) and
minD⊆(c, D) can be computed in O(α +

∑c
i=2(αi · |minD⊆(i − 1, D)|)) time, where

|minD ⊆(i − 1, D)| is the number of objects in minD⊆(i − 1, D).

Factor αi (1 ≤ i ≤ c) depends on the concrete convex-hull algorithm for calculating
the tail set. The theorem indicates that minD⊆(c, D) can be computed in shorter time
in the 2D space than the algorithm presented in Section 3 (which applies to any dimen-
sionality). To better illustrate this, we utilize the fact that |minD⊆(i, D)| is bounded by
|minD⊆(c, D)| for any i < c, which results in:

Corollary 3. The 2D minimum c-covering subset can be computed in O(α + αmax ·
|minD⊆(c − 1, D)| · (c − 1)) time, where αmax equals the maximum of α2, α3, ..., αc

defined in Theorem 5.

5 Ranked Indexes

Once the minimum c-covering subset minD⊆(c, D) has been discovered, we can cor-
rectly answer any top-k query, with arbitrary weight slope and k ≤ c, by performing
O(m/B) I/Os, where m is the number of points in minD⊆(c, D), and B is the size of
a disk page. Although being relatively straightforward, this method constitutes the first
solution for ranked retrieval in any dimensionality that does not require examining the
entire dataset in the worst case.

In the next section, we show how to pre-process minD⊆(c, D) to further reduce
query cost in the 2D space. In Section 5.2, we present pessimistic results that explain
why a similar approach is not feasible for dimensionalities d ≥ 3.

5.1 A 2D Solution

As an obvious approach, we could extract the top-c homogeneous decomposition
HD(c, D). Assume that it contains m intervals I1, I2, ..., Im, sorted in ascending order
of their starting values I1�, ... , Im�, which are indexed by a B-tree. The B-tree entry for
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Fig. 10. Indexing the top-c homog. decomp.

each Ii� (1 ≤ i ≤ m) is associated with a pointer to a sequence of O(c/B) pages, stor-
ing the c objects in Ii.S. Given a top-k query with weight slope λ, we first locate the leaf
entry Ii− in the B-tree that is the largest among all the leaf entries smaller than λ. (i.e.,
λ falls in the corresponding interval Ii). This requires O(logB m) I/Os. Following the
pointer stored with Ii−, we retrieve Ii.S (using O(c/B) I/Os), and report the k records
in Ii.S with the highest scores at λ. The total query cost is O(logB m + c/B) I/Os.

The space consumption of this approach is O(c · m/B) pages. We present an alter-
native solution that achieves the same query time but with only O(m/B) space. Recall
that for two consecutive intervals Ii and Ii+1, Ii.S differs from Ii+1.S by exactly one
point. Motivated by this, we store I.S in a compact way as illustrated in Figure 10. For
the first interval I1, c/B pages are used to record the c objects of I1.S in the same way
as the previous method. For the next c − 1 intervals Ii (2 ≤ i ≤ c), we do not mate-
rialize the full Ii.S. Instead, we keep only the difference between Ii.S and Ii−1.S in
the (B-tree) leaf entry Ii using O(1) space. The above process is repeated for the next
c intervals Ic+1, Ic+2, ..., I2c. Specifically, we write to the disk the complete Ic+1.S.
For Ii with c + 2 ≤ i ≤ 2c, only the O(1) result changes (between Ii.S and Ii−1.S)
are kept. Then, a similar process is performed for still the next c intervals, and so on.
Since O(c/B) space is allocated for every c intervals, the total space consumption is
O(m

c · c/B) = O(m/B) pages.
Given a top-k query with weight slope λ, we first identify the largest leaf entry Ii�

smaller than λ in the same way as in the previous solution. First, we scan, at the leaf
level, the preceding leaf entries I(i−1)�, I(i−2)�, ... (in this order), until finding the first
entry Ii′� (i′ ≤ i) whose Ii′�.S is completely stored. Then, we create a copy S of Ii′�.S
in the memory, and re-visit the leaf entries (that were just scanned) in a reverse order:
I(i′+1)�, I(i′+2)�, ..., Ii�. At each Ij� for i′+1 ≤ j ≤ i, we update S to the top-c result
Ij .S (of any weight slope) in interval Ij by applying the O(1) result changes recorded
in Ij�. Hence, when we arrive at Ii�, the content of S becomes Ii.S, from which the k
records with the highest scores at the query slope λ are returned. Since we need to trace
(from Ii� to Ii′�) at most O(c) leaf entries (by accessing O(c/B) pages), the query cost
is bounded by O(logB m + c/B) I/Os.

By Theorem 4, the size m of HD(c, D) is asymptotically the same as the number of
points in minD⊆(c, D). Therefore, we have:

Theorem 6. Given a constant c, we can pre-process a 2D dataset D into a structure
that consumes O(m/B) space, and answers any top-k query with k ≤ c in O(logB

(m/B) + c/B) I/Os, where m is the size of the minimum c-covering subset.

Evidently, the 2D ranked index presented earlier consumes the smallest amount of
space, since any solution that ensures correct answers for all ranked queries must store
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at least minD⊆(c, D). In practice the disk page size B is usually fairly large (a typical
value is 4k bytes), and is asymptotically comparable to c (i.e., c = O(B)). In this case,
the query performance of our solution becomes logB(m/B).

5.2 Discussion on Higher Dimensionalities

The technique in the previous section can be extended to dimensionality d > 2 for
achieving logarithmic query cost. Such an extension, however, turns out to be purely of
theoretical interests because it requires expensive space consumption for large c (and
hence violates our goal of using the minimum space to support ranked retrieval). In the
sequel, we discuss this in the 3D space, since the analysis for even higher dimensional-
ities is similar.

Given a 3D weight vector w = {w[1], w[2], w[3]}, we define its slope vector λ as a
2D vector {w[1]

w[3] ,
w[2]
w[3]}. Hence, λ can be regarded as a point in a 2D slope space, where

both axes have domain [0, ∞). Similar to Lemma 3, two weight vectors with the same
slope vector have identical top-k sets (for any k). Therefore, in the sequel, we represent
a top-k query equivalently using k and its slope vector λ.

Lemma 7. Given two 3D points p1 and p2, let pl be a function of 2D slope vector
λ = {λ[1], λ[2]}:

pl(λ) =
2∑

i=1

(λ[i] · (p1[i] − p2[i])) + (p1[3] − p2[3]) (3)

Then, p1 has a higher score than p2 for all slope vectors λ in a half-plane pl(λ) > 0,
while the score of p2 is higher in pl(λ) < 0. The scores of the two points are identical
for λ on the line pl(λ) = 0.

Given the c-covering minimum subset minD⊆ of a 3D dataset D, the slope space can
be divided into a set of disjoint regions, such that the top-c sets for all slope vectors in
a region are the same. Following the terminology in Section 4, we call such a division
a top-c homogeneous decomposition, and denote it as HD(c, D). In the sequel, we
first analyze the top-1 homogeneous decomposition HD(1, D), and then generalize the
discussion to top-c.

Let minD⊆ contain m points p1, p2, ..., pm. To compute HD(1, D), for each pi

(1 ≤ i ≤ m), we obtain m − 1 half-planes in the form of pl(λ) > 0 by defining pl
as in equation 3 using pi and every other point in minD⊆. Then, the intersection of
these m−1 half-planes includes all the slope vectors for which pi has the highest score
among all points in the original dataset D. We refer to this intersection area as the valid
region of pi. Observe that the m valid regions of all objects in minD⊆ are disjoint and
cover the entire slope space. Since each region is bounded by at most m edges, the total
complexity of all regions equals O(m2).

Therefore, a 3D top-1 search is reduced to a 2D point-location problem. Specifically,
we first obtain the 2D slope vector λ of the query, and identify the valid region that
contains λ. Then, the point associated with the region is the query result. Using an
efficient point-location structure [1], we can answer a top-1 query in O(logB(m/B))
I/Os using O(m2/B) space.
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The problem with this technique is that the space consumption is no longer minimum
(i.e., size m of minD⊆). The situation is even worse for top-c queries with c > 1. In
this case, we can generalize the above derivation and prove that any top-c query in the
3D space can be answered in O(c · logB(m/B)) I/Os using O(mc+1/B) space, where
m is the size of the minimum c-covering subset minD⊆. As c increases, the space
consumption may become prohibitive, rendering this solution impractical. In this case,
a better method is to answer a query by simply scanning minD⊆ without using any
structure, as mentioned at the beginning of Section 5.

6 Approximate Ranked Retrieval

In this section, we consider approximate ranked queries formulated in Problem 2.
Specifically, given a weight vector w, a top-(k,K) query returns k objects among the K
data points with the highest scores for w. Section 6.1 first elaborates the characteristics
of (c,C)-covering subsets, based on which Section 6.2 discusses their computation in
2D space. Section 6.3 presents query processing algorithms for all dimensionalities.

6.1 Properties of (c,C)-Covering Subsets

As discussed in Section 4.1, in the 2D space, the relative order of objects’ scores is
determined by the slope of the corresponding weight vector. Hence, we will characterize
a top-(k,K) query using three values: k, K , and the weight slope. Recall that a (c,C)-
covering subset covers any top-(k,C) query with k ≤ c. Specifically, for any value k
and weight slope λ, the subset always contains c objects in the top-C set at λ. Among all
these subsets, the smallest one is called the minimum (c,C)-covering subset, represented
as minD∗

⊆(c, C, D).
It is easy to see that the minimum C-covering subset minD⊆ (C, D) (see the previ-

ous sections) is a (c,C)-covering subset. In fact, for each weight slope λ, minD⊆(C, D)
includes the corresponding top-C set. Hence, a top-(k,C) query with slope λ can be an-
swered by returning any k points in the top-C set. The following lemma reveals the
relationship between minD⊆(C, D) and minD∗

⊆(c, C, D).

Lemma 8. minD∗
⊆(c, C, D) ⊆ minD⊆(C, D).

The lemma motivates a strategy for computing minD∗
⊆(c, C, D). Specifically, we first

retrieve minD⊆(C, D), and then eliminate the points of minD⊆(C, D) that are not
needed for top-(c,C) processing. The remaining data constitute minD∗

⊆(c, C, D). In
order to identify the objects necessary for top-(c,C) queries, we resort to an interesting
connection between (c,C)-covering subsets and the top-C homogeneous decomposition
HD(C, D), illustrated below.

Assume that HD(C, D) contains m intervals I1, I2, ..., Im. Each Ii = [Ii�, Ii�), for
1 ≤ i ≤ m, is associated with a set Ii.S consisting of the C objects having the highest
scores at any weight slope in [Ii�, Ii�). Therefore, any c points in Ii.S form a legal
result for a top-(c,C) query whose weight slope falls in [Ii�, Ii�).

For each object p ∈ minD⊆(C, D), we construct a legal set p.LS, containing the
intervals of HD(C, D) whose top-C sets involve p. For example, consider Figure 9
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where, as discussed at the end of Section 4.3, minD⊆(2, D) involves all the points
shown in the figure. HD(2, D) includes three intervals I1 = [0, λ2), I2 = [λ2, λ3), and
I3 = [λ3, ∞), where λ2 (λ3) is the slope of ray l2 (l3). The top-2 set I1.S of I1 equals
{p2, p4}, while I2.S = {p2, p1}, and I3.S = {p3, p1}. Hence, the legal set p1.LS of p1
contains intervals I2 and I3 since their top-2 sets include p1. Similarly, p2.LS = {I1,
I2}, p3.LS = {I3}, and p4.LS = {I1}.

Lemma 9. Let D⊆ be a subset of minD⊆(C, D), and also a (c,C)-covering subset.
Then, each interval in HD(C, D) is included in the legal sets of at least c points in D⊆.

In Figure 9, for instance, {p1} is not a (1,2)-covering subset since interval I3, which
is in HD(2, D), does not belong to p1.LS. Set {p1, p2}, on the other hand, is a (1,2)-
covering subset because each interval in HD(2, D) is in the legal set of either p1 or
p2 — I1 is in p2.LS, while I2 and I3 belong to p1.LS. Similarly, {p2, p3} is also a
(1,2)-covering subset.

6.2 Computing (c,C)-Covering Subsets

Lemmas 8 and 9 indicate that finding the minimum (c,C)-covering subset is equivalent
to extracting the smallest number of points from minD⊆(C, D), such that each interval
in HD(C, D) is included in the legal sets of at least c retrieved points. This is an instance
of the minimum set cover problem which, unfortunately, is NP-hard [6].

We provide a greedy solution which computes a (c,C)-covering subset, whose car-
dinality is larger than the minimum size by only a small factor. The pseudo-code of the
algorithm, called find-cCsub, is presented in Figure 11, which assumes that the legal
sets of all points in minD⊆(C, D) have been obtained. Find-cCsub maintains a set D⊆,
which is empty at the beginning of the algorithm, and becomes the produced (c,C)-
covering subset at termination. For each interval I in HD(c, D), we keep a counter
I.cnt, which equals the number of points in the current D⊆ whose legal sets include I .
The counter is set to 0 initially.

Find-cCsub executes in iterations. In each iteration, it identifies the point p in
minD⊆(C, D) with the largest legal set p.LS, and incorporates p into D⊆. For each
interval I in P.LS, the counter I.cnt is increased by 1, reflecting the fact that a point
whose legal set includes I has been newly added to D⊆. Once I.cnt reaches c, I is
removed from the legal set of every point in minD⊆(C, D) — it does not need to be
considered in the remaining execution. Finally, the object p inserted to D⊆ in this itera-
tion is eliminated from minD⊆(C, D). The algorithm terminates if the legal sets of all
remaining data in minD⊆(C, D) are empty. Otherwise, it performs another iteration.

Theorem 7. The size of the subset returned by the algorithm in Figure 11 is at most
(ln γ + 1) times larger than that of the minimum (c,C)-covering subset, where γ is the
maximum cardinality of the legal sets of the points in minD⊆(C, D).

Note that γ = |HD(C, D)| in the worst case, when the legal set of an object
in minD⊆(C, D) contains all the intervals in HD(C, D). Since |HD(C, D)| =
O(|minD⊆(C, D)|) (Theorem 4), the size of the subset produced by find-cCsub
is larger than that of the minimum (c,C)-covering subset by a factor of at most
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Algorithm find-cCsub (c, minD⊆(C, D), HD(C, D))
/* the legal set of every point in minD⊆(C, D) has been
computed */
1. D⊆ = ∅; I.cnt = 0 for each interval I ∈ HD(C, D)
2. while (a point in minD⊆(C, D) has a non-empty legal set)
3. p = point in minD⊆(C, D) with the largest legal set
4. D⊆ = D⊆ ∪ {p}
5. for each interval I in the legal set p.LS
6. I.cnt = I.cnt + 1
7. if I.cnt = c then remove I from the legal set of

every point in minD⊆(C, D)
8. minD⊆(C, D) = minD⊆(C, D) − {p}
9. return D⊆

Fig. 11. Finding a (c,C)-covering subset

ln |minD⊆(C, D)| + 1. In practice, we expect γ to be much smaller than |HD(C, D)|,
and as a result, the subset obtained by find-cCsub has a cardinality close to the theoret-
ically minimum value.

Theorem 8. The algorithm in Figure 11 finishes O(m2) time, where m is the number
of points in minD⊆(C, D).

6.3 Query Processing

Let D⊆ be a (c,C)-covering subset computed by the method in Figure 11. Given a top-
(k,C) query (k ≤ c) with weight slope λ, we simply return the k points in D⊆ having the
highest scores at λ. Due to the properties of (c,C)-covering subsets, these k objects are
guaranteed to be a legal result. The query performance can be optimized using exactly
the same techniques as in Section 4, by replacing the original dataset D with D⊆. All
the bounds on the execution cost and space consumption in Section 4 are still valid.

The above analysis applies to dimensionality 2. For higher-dimensional space, we
can compute the minimum c-covering subset minD⊆(c, D) using the algorithm in Fig-
ure 2. Note that minD⊆(c, D) is a (c,C)-covering subset, and hence, can be deployed to
substitute the original dataset D to support top-(k,C) queries (k ≤ c). This leads to an
approach that solves any such query in O(|minD⊆(c, D)| /B) I/Os. It is important to
note that we computed (c,C)-covering subset in the 2D space based on minD⊆(C, D)
(note the capitalized C), as is required by Lemma 8.

7 Conclusions

This paper introduced the concept of “minimum covering subset”, which is the smallest
subset of the database that must be stored by any ranked-retrieval algorithms to ensure
correct results for all queries. For 2D space, we developed a technique that consumes
O(m/B) space and solves any top-k query in O(logB(m/B) + c/B) I/Os, where c is
the upper bound of k, m the size of the minimum c-covering subset, and B the disk
page capacity. For higher dimensionality, our approach requires O(m/B) space and
query time.
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As a second step, we provided the first solutions for approximate ranked retrieval
that do not require inspecting the entire database in the worst case. In the 2D scenario,
our method occupies O(m′/B) space and solves a top-(k,C) query with k ≤ c in
O(logB(m′/B)+c/B) where m′ is larger than the size of the minimum (c,C)-covering
subset by a small bounded factor. For higher dimensionality, we showed that a top-(k,C)
(k ≤ c) query can be answered in O(m/B) I/Os and space, where m is the size of the
minimum c-covering subset.

This work lays down a foundation for continued investigation of ranked queries.
A promising direction for future work is to study faster algorithms for computing the
minimum covering subsets, utilizing the properties presented earlier. Another interest-
ing problem is the dynamic maintenance of minimum subsets at the presence of data
updates. Specialized approaches may be developed to explore the tradeoff between up-
date efficiency and the space overhead.
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