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Abstract

With the proliferation of spatial and spatio-temporal data that are produced everyday by a
wide range of applications, Geographic Information Systems (GIS) have to cope with millions
of objects with diverse spatial characteristics. Clearly, under these circumstances, substantial
performance speed up can be achieved with the use of spatial, spatio-temporal and other multi-
dimensional indexing techniques. Due to the increasing research effort on developing new
indexing methods, the number of available alternatives is becoming overwhelming, making the
task of selecting the most appropriate method for indexing the data according to application
needs rather challenging. Therefore, developing a library that can combine a variety of indexing
techniques under a common application programming interface can prove to be a valuable tool.
In this paper we present SaIL (SpAtial Index Library), an extensible framework that enables
easy integration of spatial and spatio-temporal index structures into existing applications. We
focus on design issues and elaborate on techniques for making the framework generic enough,
so that it can support user defined data types, customizable spatial queries, and a broad
range of spatial (and spatio-temporal) index structures, in a way that does not compromise
functionality, extensibility and, primarily, ease of use. SaIL is publicly available and has
already been successfully utilized for research and commercial applications.

1 Introduction

There is a plethora of GIS and related applications that are related with spatial, spatio-temporal

and, generally, multi-dimensional data. Typically, such applications manage millions of objects

with diverse spatial characteristics. Examples include mapping applications that have to visual-

ize numerous layers and hundreds of thousands of features [13], astronomical applications that
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index millions of images [26], traffic analysis and surveillance applications that track thousands

of vehicles, and more.

Usually, the end-user of these applications is interested in analyzing a small fragment of the

data at a time, while issuing various queries, spatial or more generic in nature. Nevertheless,

the utility of spatial indexing techniques for such applications has been well recognized — com-

plex spatial queries can be answered efficiently only with the use of spatial index structures (for

instance, nearest neighbor queries). Consequently, many indexing techniques aiming at solving

disparate problems and optimized for diverse types of spatial queries have appeared lately in the

literature (like the R-tree [18], the X-tree [6], etc.; excellent surveys on spatial index structures

appear in [16, 7]). As a result, each technique has specific advantages and disadvantages that make

it suitable for different application domains and dataset types. Therefore, the task of selecting

an appropriate access method, depending on particular application needs, is a rather challenging

problem. A spatial index library that can combine a wide range of indexing techniques under a

common application programming interface can thus prove to be a valuable tool, since it will en-

able efficient application integration of a variety of structures in a consistent and straightforward

way.

The major difficulty of such an undertaking is that most index structures have a wide range

of distinctive characteristics, that are difficult to compromise under a common framework. For

example, some structures employ data partitioning while others use space partitioning, some

have rectangular node types while others have spherical node types, some are balanced while

other are not, some are used only for indexing points while others are better for rectangles, lines,

or polygons. Another important issue is that the index structures should provide functionality

for exploiting the semantics of application-specific data types, through easy customization while

making sure that meaningful queries can still be formulated for the specific data types. Moreover,

it is crucial to adopt a common programming interface in order to promote reusability, easier

maintenance and code familiarity, especially for large application projects where many developers

are involved. The framework should capture the most important design characteristics, common

to most structures, into a concise set of interfaces. This will help developers concentrate on other

aspects of the client applications promoting, in this manner, faster and easier implementation.

The interfaces should be easily extensible in order to address future needs without necessitating
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Figure 1: Architectural diagram of SaIL.

revisions to client code.

These fundamental requirements make the design of a generic spatial index framework a chal-

lenging task. Even though there is a substantial volume of work on spatial index structures and

their properties, little work has appeared that addresses design and implementation issues. To-

wards this aim, this paper presents SaIL, a SpAtial Index Library that enables simple integration

of spatial and spatio-temporal index structures into existing applications. A sample implementa-

tion is publicly available at [1] and has been used successfully for both research and commercial

purposes (e.g., [13, 19]).

The framework consists of four components:

1. The core library toolkit which provides basic functionality. For example, generic types like

variants, implementation of utility classes like property sets, an exception class hierarchy

tailored for spatial indices, etc.

2. The storage manager toolkit for supporting diverse storage requirements. This container is

useful for decoupling the index structure implementation from the actual storage system,

enabling proper encapsulation.

3. The spatial index interface which is a set of abstractions of the most common spatial index

operations and related types. For example, interfaces for nodes, leafs, spatial data types,

spatio-temporal queries, and more.

4. The concrete implementations of various spatial index structures. For example, variants of

the R-tree, the MVR-tree, the TPR-tree, etc.

SaIL is designed to sit in-between the client application and the access methods that need to be

interfaced by the client code. A simple architectural diagram is shown in Figure 1.
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Next section presents some related work. Section 3 introduces the proposed framework. Sec-

tion 4 discusses various popular index structures and how they can be easily integrated into the

SaIL framework. Finally, Section 5 concludes the paper.

2 Related Work

The most relevant spatial index library to SaIL is the eXtensible and fleXible Library (XXL) [11].

XXL offers both low-level and high-level components for development and integration of spatial

index structures like cursors, access to raw disk, a query optimizer, etc. Even though XXL is

a superset of SaIL, it differs in three respects: First, SaIL offers a very concise, straightforward

interface for querying arbitrary index structures in a uniform manner. In contrast, XXL querying

interfaces are index specific (apart for join and aggregation queries). Second, SaIL offers more

generic querying capabilities. Despite the fact that XXL can support a variety of advanced

spatial queries (with the use of a framework for generalizing an incremental best-first search

query strategy), nonconventional user defined queries have to be implemented by hand requiring

modifications in all affected index structures. In contrast, SaIL offers an intuitive interface,

utilizing well known design patterns, for formulating novel queries without having to revise the

library in any way. Finally, SaIL provides the capability to customize query behavior during

execution with the use of standardized design patterns. In contrast, in XXL this capability has

to be supported explicitly by all index structure implementations.

GiST (for Generalized Search Tree [20]) is also relevant to this work. GiST is a framework that

generalizes a height balanced, single rooted search tree with variable fanout. In essence, GiST

is a parameterized tree that can be customized with user defined data types and user defined

functions on these types which help guide the structural and searching behavior of the tree. Each

node in the tree consists of a set of predicate/pointer pairs. Pointers are used to link the node

to children nodes or data entries. Predicates are the user defined data types stored in the tree.

The user, apart from choosing a predicate domain (e.g., the set of natural numbers, rectangles on

a unit square universe, etc.), must also implement a number of methods (i.e., consistent, union,

penalty and pickSplit) which are used internally by GiST to control the behaviour of the tree. By

using a simple interface, GiST can support a wide variety of search trees and their corresponding
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querying capabilities, including B-trees [9] and R-trees [18].

In order to support an even wider variety of structures, Aoki [2] proposed three additions to

GiST. The GiST interface was augmented with multiple predicate support, which is useful for

storing meta-data in the tree nodes. The tree traversal interface was also improved, so that the

user can define complex search strategies. Finally, support for divergence control was added, so

that a predicate contained in a parent node need not correspond to an accurate description of

its subtree (for example an R-tree with relaxed parent MBRs that do not tightly enclose their

children). Other extensions have also been proposed that modify the internal structure of GiST

so that it can support very specialized indices, for instance, the TPR-tree [23] for moving objects.

Aref and Ilyas proposed the SP-GiST framework [3] which provides a novel set of external

interfaces and original design, for furnishing a generalized index structure that can be customized

to support a large class of spatial indices with diverse structural and behavioral characteristics.

The generality of SP-GiST allows the realization of space and data driven partitioning, balanced

and unbalanced structures. SP-GiST can support k-D-trees [5], tries [10, 15], quadtrees [14, 25]

and their variants, among others.

Our work is orthogonal to XXL, GiST, SP-GiST and their variants. These libraries address the

implementation issues behind new access methods by removing the burden of writing structural

maintenance code from the developer. SaIL does not aim to simplify the development process

of the index structures per se, but more importantly, the development of the applications that

use them. In that respect, it can be used in combination with all other index structure developer

frameworks. Employing SaIL is an easy process that requires the implementation of simple adapter

classes that will make index structures developed with XXL, GiST, and SP-GiST compliant to the

interfaces of SaIL, conflating these two conflicting design viewpoints. Ostensibly, existing libraries

can be used for simplifying client code development as well — and share, indeed, some similarities

with SaIL (especially in the interfaces for inserting and deleting elements from the indices) —

but given that they are not targeted primarily for that purpose, they are not easily extensible

(without the subsequent need for client code revisions), they do not promote transparent usage

of diverse indices (since they use index specific interfaces), and they cannot be easily used in

tandem with any other index library (existing or not). Finally, SaIL is the first library that

introduces functionality for supporting temporal and spatio-temporal indices, through specialized
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Table 1: Summary of novel features of SaIL (‘
√

’ full, ‘×’ partial, ‘-’ none).
Features SaIL XXL GiST SP-GiST
Query execution customization

√ × × ×
Query strategy customization

√ × - -
Generic shape abstractions

√
- - -

Storage management decoupling
√ × × ×

Index operation customization
√

- - -
Temporal/Spatio-temporal interfaces

√
- - -

capabilities that all other libraries are lacking. A table summarizing the novel features of SaIL

(that will be explained in more detail subsequently) appears in Table 1.

3 Spatial Index Library Architecture

In this section we present the most important concepts behind SaIL’s design decisions using

various examples. Figure 2 summarizes the UML notation used in the text and diagrams. When

referring to a specific design pattern we use the definitions of Gamma et al. [17]. For convenience,

some design pattern descriptions (quoted from [17]) are listed in Table 2.

Table 2: Design Pattern Descriptions
Name Description
Memento Without violating encapsulation, capture and externalize an object’s internal

state so that the object can be restored to this state later.
Proxy Provide a surrogate or place holder for another object to control access to it.
Composite Composite lets clients treat individual objects

and compositions of objects uniformly.
Facade Provide a unified interface to a set of interfaces in a subsystem.

Facade defines a higher-level interface that makes the subsystem easier to use.
Visitor Represent an operation to be performed on the elements of

an object structure. Visitor lets you define a new operation without
changing the classes of the elements on which it operates.

Strategy Define a family of algorithms, encapsulate each one,
and make them interchangeable.

Command Encapsulate a request as an object, thereby letting you parameterize
clients with different requests.
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Figure 2: Notation used in the paper.

3.1 The Core Toolkit

The abstract and concrete classes offered by the core toolkit are shown in Figure 3 (note that

this and the remaining figures adopt the diagrammatic notation shown in Figure 2). This toolkit

addresses very simple but essential needs for any generic framework.

It provides a Variant type for representing a variety of different primitive types (like integers,

floats, character arrays, etc.), which is necessary for avoiding hard coding specific primitive types

in interface definitions that might need to be modified at a later time. It offers a PropertySet,

or a collection of < PropertyName, V alue > pairs. Property sets are useful for passing an

indeterminate number of parameters to a method, even after the interfaces have been defined,

without the need to extend them. For example, adding and handling the initialization of new

properties to an object can be achieved without modifying its constructor, if a PropertySet is

used as one of the constructor’s arguments.

An index specific Exception class hierarchy is provided which helps promote the use of excep-

tion handling in client code, in a structured manner. Some basic interfaces representing essential

object properties are also defined. For example interfaces for serializing and comparing objects,

defining streams/iterators on object collections, etc. Other helper classes are provided as well,

representing open/closed intervals, random number generators, resource usage utilities, etc. (some

utilities are left out of this figure).

An important utility class provided by the core toolkit is ExternalSort. External sorting is

needed for sorting very large relations that cannot be stored in main memory, an operation that is
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enum IntervalType

RightOpen
LeftOpen
Open
Closed

operator<(const IComparable&) : bool

operator>(const IComparable&) : bool
operator==(const IComparable&) : bool

IComparable
IObjectStream

getNext() : IObject*

hasNext() : bool
size() : ulong
rewind() : bool

ISerializable

getSize() : ulong
load(byte* const data) : ulong
store(ulong& len, byte** data)

IInterval

contains(IInterval&)
intersects(IInterval&)

getLowerBound() : double
getUpperBound() : double

properties : HashMap

enum VariantType

float
double
byte
...

IObject

clone() : IObject*

ExternalSort

sort(IObjectStream** src, ulong bufferSize)

IObjectStream

Variant

type : VariantType
value : union

removeProperty(string)
setProperty(string, Variant)

PropertySet

getProperty(string) : Variant

Figure 3: The Core Toolkit.

essential for bulk loading an index structure. By using the IObject, IComparable and ISerializable

interfaces, ExternalSort is a generic sorting utility that can sort entries of any user defined data

type in a very robust and straightforward manner. The caller needs to define an object stream that

provides the sorter with objects of type IObject (using the IObjectStream interface), in random

sequence. Then, ExternalSort iterates over the input objects is sorted order, as implied by a

user provided comparator implementation. Sorting is accomplished by using temporary files on

secondary storage. Conveniently, ExternalSort implements the IObjectStream interface itself

and, thus, can be used as a Proxy in place of an IObjectStream, with the only difference that

the stream appears to be in sorted order.

3.2 The Storage Manager Toolkit

A critical part of spatial indexing tools is the storage manager, which should be versatile, very

efficient and provide loose coupling. Clients that must persist entities to secondary storage should

be unaware of the underlying mechanisms, in order to achieve proper encapsulation. Persistence
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storeMemento(long& id, const Memento&)
deleteMemento(long id)

Buffer

Buffer(IStorageManager&, PropertySet&)

buffer : HashMap
capacity : ulong
sm : IStorageManager*

Memento

data : byte*

setState(long lenght, byte* data)
getState(long& length, byte** data)

length : ulong

IBuffer

clear()
getHits() : ulong

addEntry(long id, const Memento&)
removeEntry()

DiskStorage

PageFile
. . . . . .LRUBuffer

. . .

MemoryStorage

HashMap

IStorageManager

loadMemento(long id, Memento&)

Figure 4: The Storage Manager Toolkit.

could be over the network, on a disk drive, in a relational table, etc. All mediums should be

treated uniformly in client code, in order to promote flexibility and facilitate the improvement of

storage management services as the system evolves, without the need to update the client code.

The storage manager toolkit is shown in Figure 4. The key abstraction is a Memento pattern

that allows loose coupling between the objects that are persisted and the concrete implementation

of the actual storage manager. An object that wants to store itself has to instantiate a concrete

subclass of Memento that accurately represents its state. Then, it can pass this instance to a

component supporting the IStorageManager interface, which will return an identifier that can

be used to retrieve the object’s state at a later time. Two concrete implementations of the

IStorageManager interface are already provided. A main memory manager that uses a hash table

and a disk based page file.

This architecture allows multiple layers of storage management facilities to be streamlined one

after the other. A simple example is the need to store data over a network. A simple adapter

class can be implemented that sends the data over the network with the proper format expected

by the remote computer that uses a second adapter class to persist the data. Another example

is the implementation of a relational based index structure. An adapter can be embedded on an

existing implementation, converting the data to be persisted into appropriate SQL statements
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that store them in a relational table (e.g., as BLOBs).

The IBuffer interface provides basic buffering functionality. It declares the two most important

operations of a buffer: adding and removing an entry. The Buffer abstract class provides a default

implementation for the major operations of a buffer component. For convenience, a concrete

implementation of a Least Recently Used buffering policy is already provided. Using the IBuffer

interface is straightforward; it acts as a proxy between an actual storage manager and a client,

buffering entries as it sees fit. The client instantiates a concrete buffer class, provides the buffer

with a reference to the actual storage manager and finally associates the index structure (or any

other component that will use the storage manager) with a reference to the buffer. Conveniently,

the callers are unaware that buffering is taking place by assuming that a direct interface with the

actual storage manager is used. This architecture provides sufficient flexibility to alter buffering

policies at runtime, add new policies transparently, etc.

3.3 The Spatial Index Interface

Spatial access methods are used for indexing complex spatial objects with varying shapes. In

order to make our interfaces generic it is essential to have a basic shape abstraction that can

also represent composite shapes and other decorations (meta-data like z-ordering, insertion time,

etc.). We define the IShape Composite pattern (Figure 5) as an interface that all index structures

should use to decouple their implementation from actual concrete shapes. For example, inserting

convex polygons into an R-tree [18] can be accomplished by calling the IShape.getMBR method

to obtain the minimum bounding region of the polygon. As long as the user defined polygon class

returns a proper MBR representation, the R-tree remains unaware of the actual details of the

polygon class, internally — all it needs to be aware of is the IShape.getMBR contract. Complex

shapes and combinations of shapes can be represented by composing a number of IShapes under

one class and, hence, can be handled in a uniform manner as all other classes of type IShape.

Various methods useful for comparing IShapes (like contains, intersects, etc.) are also specified.

In addition, the IShape interface can handle shapes with arbitrary dimensionality, so that multi-

dimensional indices can be supported.

The ITimeShape interface extends IShape with methods for comparing shapes with temporal

predicates. An ITimeShape has temporal extents, acquired by implementing the IInterval inter-
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getCenter(Point&)
getMBR(Region&)

intersects(IShape&) : bool
contains(IShape&) : bool
touches(IShape&) : bool
getDimension() : ulong

getArea() : double
get MinDist(IShape&) : double

IEvolvingShape

getMBRAtTime(double, Region&)
getVMBR(Region&)
...

...

ITimeShape

intersectsInTime(IShape&) : bool
containsInTime(IShape&) : bool
touchesInTime(IShape&) : bool
getAreaInTime() : double

IInterval

Region ITimeShape TimeRegion

Point ITimeShape TimePoint

IEvolvingShape EvolvingRegion

IEvolvingShape EvolvingPoint

IShape

Figure 5: The shape interfaces.

face. This abstraction is useful for handling spatio-temporal indices, where the indexed objects

are associated with insertion and deletion times, as well as for specifying spatial queries with

temporal restrictions.

Furthermore, to cover special cases where shapes evolve over time, the IEvolvingShape interface

is provided. An evolving shape can be represented by associating a velocity vector to every

vertex of the representation and, in addition, it can be approximated by an evolving MBR.

Special methods must also be implemented for computing intersections, area, volume, and other

characteristics over time. The IEvolvingShape interface is derived from ITimeShape and, thus,

such shapes can be associated with temporal extents during which the evolution is taking place.

Concrete implementations of basic shapes are provided for convenience. These shapes provide

basic functionality, like computing intersections, areas, temporal relations, etc.

An essential capability of a generic index manipulation framework is to provide a sound set

of index elements (leaf and index nodes, data elements, etc.) that enable consistent manipulation

of diverse access methods from client code. For example, querying functions should return itera-

tors (i.e., enumerations or cursors) over well-defined data elements, irrespective of what kind of

structures they operate on. In general, a hierarchical index structure is composed of a number
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getIdentifier() : long
getShape() : IShape*

INode

getChildrenCount() : ulong
getChildIdentifier(ulong) : ulong
getChildShape(long) : IShape*
getLevel() : ulong
isIndex() : bool
isLeaf() : bool

IData

getData(long len, byte**)

ISerializable IEntry

Figure 6: The index element interface.

of nodes and a number of data entries. Every node has a specific shape, identifier and level.

Nodes are further divided into index nodes and leaves. Data entries are either simple pointers

to the actual data representations on disk (a secondary index), or the actual data themselves (a

primary index). The data elements can be either exact shape representations or more generic

meta-data associated with a specific index entry. These concepts are represented by using the

following hierarchy: IEntry is the most basic interface for a spatial index entry; its basic members

are an identifier and a shape. INode (that inherits from IEntry) represents a generic tree node;

its basic members are the number of children, the tree level, and a property specifying if it is an

index node or a leaf. The IData interface represents a data element and contains the meta-data

associated with the entry or a pointer to the real data.

The core of the spatial index interface is the ISpatialIndex Facade pattern. All index struc-

tures should implement ISpatialIndex (apart from their own custom methods), which abstracts

the most common index operations. This interface is as generic as possible. All methods take

IShapes as arguments and every shape is associated with a user defined identifier that enables

convenient referencing of objects. Below we describe each method in more detail.

The insertData method is used for inserting new entries into an index. It accepts the data

object to be inserted as an IShape — an interface that can be used as a simple decorator over

the actual object implementation. Meta-data can also be stored along with the object as byte

arrays (useful for implementing primary indices). The deleteData method locates and deletes an

object already contained in an index. It accepts the IShape to be deleted and its object identifier.

(The IShape argument is necessary since spatial indices cluster objects according to their spatial

characteristics and not their identifiers.)
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IQueryStrategy

IVisitor

ICommand

INearestNeighborComparator

ISpatialIndex

insertData(long len, byte* data, IShape&, long id)

IStatistics

. . .
addCommand(int event, ICommand&)
IStatistics* getStatistics()
PropertySet* getIndexProperties()
queryStrategy(IQueryStrategy&)

INearestNeighborComparator&)
nearestNeighborQuery(long k, IShape&, IVisitor&,
pointLocationQuery(IShape&, IVisitor&)
intersectionQuery(IShape&, IVisitor&)
containmentQuery(IShape&, IVisitor&)
deleteData(IShape&, long id)

getNextEntry(IEntry&, long& nextID, bool& stop)

double getMinimumDistance(IShape&, IData&)
double getMinimumDistance(IShape&, IShape&)

visitNode(INode&)
visitData(IData&)

execute(INode&)

long getReads()
long getWrites()
. . .

enum Commands
writeNodeCommand
readNodeCommand
. . .

Figure 7: The generic spatial index interface.

The query methods take the query IShape as an argument. This simple interface is powerful

enough to allow the developer to create customized queries (this is one of the main differences

with XXL). For example, suppose a circular range query on an R-tree is required. Internally,

the R-tree range search algorithm decides if a node should be examined by calling the query

intersects predicate on a candidate node MBR. Hence, it suffices to define a Circle class that

implements the intersects function (specific for intersections between circles and MBRs) and call

the intersectionQuery method with a Circle object as its argument. Since arbitrarily complex

shapes can be defined with the IShape interface, the querying capabilities of the index structures

are only limited by the ability of the developer to implement correctly the appropriate predicate

functions, for the IShape objects used as arguments to the querying methods.

In order to provide advanced customization capabilities a Visitor pattern is used. The

IVisitor interface is a very powerful feature (something that XXL does not provide). The query

caller can implement an appropriate visitor that executes user defined operations when index

entries are accessed. For example, the visitor can ignore all index and leaf nodes and cache all

visited data entries (essentially the answers to the query) for later processing (like an enumeration).

Instead, it could process the answers interactively (like a cursor), terminating the search when

desired (an interactive k-nearest neighbor query is a good example, where the user can stop the
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execution of the query after an adequate number of answers has been discovered). Another useful

example of the Visitor pattern is tallying the number of query I/Os. By counting the number

of times each visit method has been called, it is possible to count the number of index nodes,

leaf nodes, or “any” level nodes that were accessed for answering a query (the visitNode method

returns an INode reference when called, which provides all necessary information on the specific

node accessed, e.g., its level, shape, etc.). A tallying visitor is presented in Algorithm 1. A different

example is visualizing the progress of the query. As the querying algorithm proceeds, the visitor

can draw the last accessed node or data element on the screen. An access method can support

the IVisitor interface simply by guaranteeing that all query algorithms call the visitNode and

visitData methods of IVisitor, every time a node or a data entry is accessed while searching the

structure. Thus, supporting the IVisitor interface requires a very simple, inexpensive procedure.

Algorithm 1 IVisitor example.

class MyVisitor : public IVisitor {
public:
map<long, IShape*> answers;
long nodeAccesses;

MyVisitor() : nodeAccesses(0) {}

public visitNode(INode* n) {
nodeAccesses++;

}

public visitData(IData* d) {
// add the answer to the list.
answers[d.getIdentifier()] = d.getShape();

}
};

The IShape and IVisitor interfaces enable consistent and straightforward query integration

into client code, increasing readability and extensibility. New index structures can add specialized

functionality by requesting decorated IShape objects (thus, without affecting the interfaces). The

IVisitor interface allows existing visitor implementations to be reused for querying different types

of access methods and users can customize visitors during runtime.

To illustrate the simplicity of supporting the IVisitor interface from the querying methods

of a spatial index implementation, the actual implementation of a range query algorithm of a
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hierarchical structure that supports all of the aforementioned features is shown in Algorithm 2.

Algorithm 2 Range query method implementation that supports the IVisitor interface.

void rangeQuery(const IShape& query, IVisitor& v) {
stack<NodePtr> st;
Node* root = readNode(m_rootID);

if (root->m_children > 0 && query.intersects(root->m_nodeBoundary)) st.push(root);

while (! st.empty()) {
Node* n = st.top(); st.pop();

if (n->isLeaf()) {
v.visitNode(*n);

for (unsigned long cChild = 0; cChild < n->m_children; cChild++) {
if (query.intersects(n->m_childBoundary[cChild])) {
v.visitData(n->m_childData[cChild]);

}
}

} else {
v.visitNode(*n);

for (unsigned long cChild = 0; cChild < n->m_children; cChild++)
if (query.intersects(n->m_childBoundary[cChild]))
st.push(readNode(n->m_childIdentifier[cChild]));

}
}

}

An even larger degree of customization is provided for the nearest neighbor query method.

Since different applications use diverse distance measures to identify nearest neighbors (like the

Euclidean distance, and others), the nearestNeighborQuery method accepts an INearestNeigh-

borComparator object. By allowing the caller to provide a customized comparator, the default

nearest neighbor algorithm implemented by the underlying structure can be used, obviating any

application specific changes to the library. In reality, a nearest neighbor comparator is essential,

since in order to find the actual nearest neighbors of a query, the query has to be compared with

each candidate’s exact representation so that an exact distance can be computed. Since most

spatial index structures store object approximations in place of the real objects (e.g., R-trees

store MBRs), internally they make decisions based on approximate distance computations and,

hence, cannot identify the exact nearest neighbors. One way to overcome this weakness, is to
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let the index load the actual objects from storage and compute the real distances only when

appropriate. Albeit, this would break encapsulation since loading the actual objects implies that

the index has knowledge about the object representations. Alternatively, the user can provide

a nearest neighbor comparator that implements a method for comparing index approximations

(e.g., MBRs) with the actual objects (e.g., polygons). Method getMinimumDistance is used for

that purpose.

For implementing “exotic” queries, without the need to make internal modifications to the

library, a Strategy pattern is proposed (another advanced feature that XXL is lacking). Using

the queryStrategy method the caller can fully guide the traversal order and the operations per-

formed on a structure’s basic elements allowing, in effect, the construction of custom querying

algorithms on the fly. This technique uses an IQueryStrategy object for encapsulating the traversal

algorithm. The index structure calls IQueryStrategy.getNextEntry by starting the traversal from

a root and the IQueryStrategy object chooses which entry should be accessed and returned next.

The traversal can be terminated when desired. As an example, assume that the user wants to

visualize all the index levels of an R-tree. Either the R-tree implementation should provide a cus-

tom tree traversal method that returns all nodes one by one, or a query strategy can be defined

for the same purpose (which can actually be reused as is, or maybe with slight modifications,

for any other hierarchical structure). An example of a breadth-first node traversal algorithm is

presented in Algorithm 3 (the example requires less than 15 lines of code). Another example for

computing the total space indexed by an R-tree is shown in Algorithm 4. Many other possible

uses of the query strategy pattern exist.

Another capability that should be provided by most index structures is allowing users to

customize various index operations (usually by the use of call-back functions). The spatial index

interface uses a Command pattern for that purpose. It declares the ICommand interface —

objects implementing ICommand encapsulate user parameterized requests that can be run on

specific events, like customized alerts. All access methods should provide a number of queues,

each one corresponding to different events that trigger each request. For example, assume that

we are implementing a new index structure. We can augment the function that persists a node to

storage with an empty list of ICommand objects. Using the addCommand method the user can

add arbitrary command objects to this list, that get executed whenever this function is called,
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Algorithm 3 Breadth-first traversal of index nodes.

class MyQueryStrategy : public IQueryStrategy {
queue<long> ids;

public:
void getNextEntry(IEntry& e, long& nextID, bool& stop) {
// process the entry.
...

// if it is an index entry and not a leaf
// add its children to the queue.
INode* n = dynamic_cast<INode*>(&e);
if (n != 0 && ! n->isLeaf())
for (long cChild = 0; cChild < n->getChildrenCount(); cChild++)
ids.push(n->getChildIdentifier(cChild));

stop = true;
if (! ids.empty()) {
// if queue not empty fetch the next entry.
nextID = ids.front(); ids.pop();
stop = false;

}
}

};

Algorithm 4 Finding the total indexed space.

class MyQueryStrategy : public IQueryStrategy
{
public:
Region m_indexedSpace;

public:
void getNextEntry(IEntry& e, long& nextID, bool& stop) {
// stop after the root.
stop = true;

IShape* ps;
entry.getShape(&ps);
ps->getMBR(m_indexedSpace);
delete ps;

}
};
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by specifying an appropriate event number (an enumeration is provided for that purpose). Every

time the function is called, it iterates through the ICommand objects in the list and calls their

execute method. Another example is the need to track specific index entries and be able to raise

alerts whenever they take part in splitting or merging operations, or they get relocated a new

disk page. The Command pattern promotes reusability, clarity, and ease of extensibility without

the need of subclassing or modifying the spatial index implementations simply to customize a few

internal operations as dictated by user needs.

4 Test-case Scenarios

The task of implementing robust index structures raises a number of important design issues.

We argue that trying to make an index structure implementation compatible with the SaIL

framework helps eliminate many design issues which have been resolved in advance. In addition,

SaIL’s interfaces help incorporate index structures very easily into existing applications, especially

after developers become familiar with its basic features and design pattern approaches. To test

our claim we implemented a classic spatial index, namely the R-tree [18], and two popular spatio-

temporal structures, the MVR-tree [22, 21, 27] and the TPR-tree [23]. With this choice of test-

cases we show the versatility and applicability of the framework to both traditional and non-

traditional structures. The MVR-tree is a multi-version structure proposed for archiving and

querying “past” versions of an R-tree, as it evolves through updates. In contrast, the TPR-

tree has been proposed for querying “future” positions of moving objects, based on their current

positions and velocity vectors. Below we discuss various implementation issues of the three test-

cases.

4.1 R-tree

The R-tree design process is simplified substantially in a very intuitive manner. The IEntry

hierarchy directs the decomposition of tree entries into Node and Data classes, implementing

INode and IData respectively. In turn, Node can be extended into specialized Index and Leaf

classes. By design, all tree entries point to other entries of type IEntry. Thus, since both index and

leaves operate on children of the same type, common functionality (like node splitting algorithms,
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deletion algorithms, update propagation, etc.) shared by both, are implemented in the generic

class Node. Defining Index and Leaf allows variable node fanout among these fundamentally

different tree levels as well as specializing leaves with useful methods that act on entries of type

IData.

Persisting a node (index or leaf) requires a simple conversion of its state to a byte array and

the instantiation of an appropriate Memento class. Storage management and buffering decisions

are differed to the client code, which can use the storage management facilities of the framework

(or any other framework, like SHORE [8]) directly. The tree internally only needs to use the

ISerializable and IStorageManager interfaces, simplifying substantially node storage issues.

Customizing various internal operations of the R-tree (like writing, reading, deleting, splitting

nodes, inserting and deleting data, etc.), is achieved by using several ICommand lists and the

addCommand method of ISpatialIndex, thus obscure call-back functions are avoided and multiple

different commands can be executed per operation.

R-tree construction is simplified substantially with the use of PropertySets. Only one con-

structor and a list of property strings should be exported by the index. It is up to the user to

initialize an appropriate property set or use the default values. The list of properties can grow

easily according to future needs.

An important part of the framework is committing to the ISpatialIndex facade methods.

The update methods accept IShapes and convert them internally to minimum bounding boxes

(Regions) by using the getMBR method of IShape. The query methods use the query shape

intersect and contain predicates to guide the search of the tree without any knowledge of the

actual shapes involved (thus any type of shapes can be used in an intuitive manner as long as

they implement these predicates). Also, the query methods respect the IVisitor interface simply

by calling the visitNode and visitData methods on all accessed entries. By conforming to these

two simple interfaces the index can support a wide range of user customizable queries as well

as achieving proper encapsulation and avoid contaminating the implementation with application

specific logic.
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4.2 MVR-tree

The second test-case illustrates how SaIL can support multi-version access methods. A data

structure is called multi-version (or “persistent” [12, 24, 4]) if it maintains all its past versions.

Typical data structures are single-version (or “ephemeral”) in the sense that an update (insertion

or deletion) creates a new version of the data structure while its previous version is discarded.

The MVR-tree is a multi-version structure that efficiently stores the evolution of an R-tree

over a sequence of updates. Consider for example an ephemeral R-tree (version V0) indexing a

collection of objects. Assume that a sequence of updates is applied on this tree. For simplicity,

assume that each operation results in a new version of the R-tree. That is, updates u1, u2, ..., un

create versions V1, V2, ..., Vn. Note that a new version is created by updating the previous version

(i.e., a linear versioning is assumed). The aim is to maintain all individual versions that the

R-tree ever obtained. Querying past states of a structure provides additional functionality since

it allows access to the objects indexed by the structure at a particular version.

One simplistic, but rather inefficient approach to maintain all versions of an evolving data

structure is to store a complete snapshot of the structure at every update. This, however, would

result in prohibitively large (quadratic) space utilization. Instead, the MVR-tree embeds all past

versions of the evolving R-tree into its structure with little space overhead (linear to the number

of updates in the R-tree evolution).

Introduction to the MVR-tree. The MVR-tree is a directed acyclic graph with multiple

root nodes each of which is responsible for recording a consecutive part of the ephemeral R-tree

evolution. Thus a root in the MVR-tree is associated with a disjoint version interval of the R-tree

evolution. A query about a particular version Vq would follow only the root that contains Vq.

Data records in the leaf nodes maintain the evolution of the ephemeral R-tree data objects.

Since past states need to be recorded, object records are extended to include “lifetime” version

intervals (Vi, Vj), where Vi is the version when this object was inserted in the R-tree and Vj the

version when it was deleted (if ever) from the R-tree (Vj > Vi). A physical insertion of an object

in version Vi of the R-tree corresponds to inserting a record for this object in the MVR-tree,

accompanied by interval (Vi, ∗) (here ∗ represents the yet unknown end-version for this object). If

this object is physically deleted from the R-tree at a later version Vj , the ∗ in its version interval
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is replaced by Vj (i.e., it corresponds to a “logical” deletion in the MVR-tree). Similarly, index

records in the directory nodes maintain the evolution of the corresponding index records of the

ephemeral R-tree and are also augmented with version intervals.

A data record is termed “alive” for all versions included in its version interval. With the

exception of root nodes, a leaf (or index) node is “alive” for all versions that it has at least B ·Pv

alive records, where 0 < Pv < 0.5 is a tree parameter and B is the node capacity. This implies

that at least half of the entries contained in any node that is alive, should also be alive. This

requirement enables clustering objects that are alive at a given version in a small number of nodes,

which in turn will minimize the query I/O. This is achieved by using novel merging and splitting

policies during updates.

Consider an update at version V . The MVR-tree is searched to locate the target leaf node

where the update is to be applied. This search is carried out using the version intervals of the

index and leaf nodes (they should contain V ), while traversing the structure. Non-structural are

those updates which are handled within the target leaf node. Otherwise, if an update creates a

new node, it is termed structural [4]. A structural update is triggered by (1) an insertion if the

target leaf node already has B records (node overflow), or, by (2) a deletion that lets the target

node with less than B · Pv alive records (weak version underflow).

Node overflow and weak version underflow require special handling. Overflows cause a split

on the target leaf node. Splitting a node A at version V is performed by creating a new node A′

and copying all the alive records from A to A′. Node A is considered dead after version V . To

avoid having frequent structural changes on node A′, the number of alive entries that it contains

must be in the range [B · Psvu, B · Psvo], where Psvu and Psvo are predetermined constants. This

allows a constant number of non-structural changes on A′ before a new structural change occurs.

If A′ has more than B · Psvo alive records a strong version overflow occurs; the node will have to

be key-split into two new nodes. A key-split does not take object version lifetimes into account.

Instead, it splits the entries according to their spatial characteristics (e.g., by using the R*-Tree

splitting algorithm which tries to minimize spatial overlap). On the other hand, if A′ has less than

B · Psvu alive records a strong version underflow occurs; the node will have to be merged with

a sibling node before it can be incorporated into the structure ([22, 27] discuss various merging

policies in detail).
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Using SaIL to implement the MVR-tree. Since, in essence, the MVR-tree is a structure

that encapsulates a combination of many R-trees it can be implemented using the SaIL framework

as a direct extension of the R-tree. Few modifications however are necessary, relating to handling

insertions, deletions and queries with “version-aware” shapes, as well as to the new merging and

splitting policies.

Since most of these operations act on nodes, the R-tree Node class can be extended, and a

few methods can be overridden, to support the modified splitting and the new merging policies.

Inserting data into the tree requires specifying the associated version lifetime of the data. Mod-

ifying the ISpatialIndex facade is obviously not an option. Instead, we define extensions of all

concrete shapes, by implementing the IInterval interface. Every shape inserted in the MVR-tree,

as a constraint, should implement this interface — a commitment that can be verified at runtime.

The querying methods do not have to be modified either. A query shape should also include an

associated query version interval. For these purposes the ITimeShape interface has been defined,

which extends IShape to implement IInterval. Intuitively, Points and Regions are extended into

VersionPoints and VersionRegions respectively (which are specializations of ITimePoint and

ITimeRegion that can handle open ended intervals, needed for the MVR-tree). This modification

fits nicely into the SaIL framework; the new interfaces and classes are simple extensions of already

existing classes, thus, interface definitions need not be modified (something that would create in-

compatibilities with existing clients). Code reuse is promoted by extending existing shapes into

their “version-aware” counterparts.

An interesting problem is how to traverse the complete MVR-tree using the SaIL framework,

since the graph has multiple roots. A simple modification would extend the ISpatialIndex facade

with methods that can initiate searches on specific roots, a solution that is not preferable since

other access methods would need to be modified to support the new facade. Moreover, the

queryStrategy method initiates a search by returning the “only” root of a tree at the first iteration.

An elegant and very simple solution in case of multiple roots is to augment the tree structure

with a sentinel node that points to all the roots (i.e., a list of roots). Hence, the tree can still take

advantage of the queryStrategy pattern as long as users that need this functionality are aware

that the sentinel node is returned as the first iteration of the method (which depends on proper

documentation).
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4.3 TPR-tree

The TPR-tree is a spatio-temporal index structure that indexes moving objects, namely d-

dimensional rectangles that follow linear movements in time. The structure is a direct extension of

R-trees, with the only difference being that objects are grouped into time-parameterized MBRs —

each vertex of a time-parameterized MBR is associated with a velocity vector that helps compute

the position of the MBR in the future. As time progresses the MBR evolves by shrinking or en-

larging independently in all dimensions. The idea is that a time-parameterized MBR bounds the

evolving objects that it contains at all times in the future, by taking into account the movements

of its children, inside some pre-specified horizon. Objects are grouped into nodes according to

both their spatial location and velocity characteristics.

The TPR-tree can be directly derived from the R-tree, since structurally both indices are

the same. Two important changes have to be made: (1) The Node class has to be extended to

support splitting policies for time-parameterized MBRs that take velocities into account; (2) In

addition, special IShapes with geometric properties of evolving shapes need to be defined. For

that purpose the IEvolvingShape interface is provided as a direct extension of the ITimeShape

interface. EvolvingPoint and EvolvingRegion act as the time-parameterized objects of the

structure. Any shape that implements IEvolvingShape can be inserted into the structure as long

as the getV MBR method is supported. The tree internally approximates the object into an

evolving MBR by verifying that the object implements IEvolvingShape at runtime.

All classes needed to support the TPR-tree are extensions of already defined interfaces. Notice

the intuitive and progressive evolution of the IShape hierarchy from simple shapes indexed in a

spatial index, to time-aware shapes indexed into a spatio-temporal index, to evolving time-aware

shapes indexed into a structure for moving objects. SaIL’s interface hierarchies are apt to progres-

sive and straightforward extensions, according to application needs. In addition, methods defined

for existing objects can be used directly when applicable, in new structures. For instance, the

EvolvingRegion class is derived from TimeRegion, which means that all time-aware methods

do not have to be re-implemented. Other methods that need to take into account velocity vectors

can be added and implemented directly into the new class, without affecting other code.
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Figure 8: Visualizing 2- and 3-dimensional R-trees.

4.4 R-tree Visualization

Finally, as a proof of concept, we present a simple application for visualizing R-trees. We have

implemented a Java applet that can read any 2- or 3-dimensional R-tree created with our library,

and draw its underlying structure on screen (Figure 8).

The applet uses the Java3D library to draw on the screen, and the basic facilities provided

by SaIL to access and traverse the index structure. We implemented a simple query strategy

that traverses the tree and returns all the essential information about tree nodes, sequentially.

Interfacing the tree is extremely simple and requires only few lines of code. The demo can be

downloaded from [1].

5 Conclusions

We presented an extensible spatial index framework for developers of spatial and spatio-temporal

applications. We argue that the proposed framework will help developers incorporate indexing

techniques with greater ease into existing applications. The framework is based on well docu-

mented design patterns that promote reusability and improved code quality. SaIL has already

been used in both research (UCR) and industry (ESRI) environments and we believe it will be very

helpful for the GIS community. A sample implementation in C++ and Java can be downloaded
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freely from [1].
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