
Indexing Multi-Dimensional Time-Series with Support for
Multiple Distance Measures

Michail Vlachos Marios Hadjieleftheriou Dimitrios Gunopulos † Eamonn Keogh
UC Riverside, {mvlachos, marioh, dg, eamonn}@cs.ucr.edu

ABSTRACT
Although most time-series data mining research has concen-

trated on providing solutions for a single distance function,
in this work we motivate the need for a single index structure
that can support multiple distance measures. Our specific
area of interest is the efficient retrieval and analysis of tra-
jectory similarities. Trajectory datasets are very common
in environmental applications, mobility experiments, video
surveillance and are especially important for the discovery
of certain biological patterns. Our primary similarity mea-
sure is based on the Longest Common Subsequence (LCSS)
model, that offers enhanced robustness, particularly for noisy
data, which are encountered very often in real world applica-
tions. However, our index is able to accommodate other dis-
tance measures as well, including the ubiquitous Euclidean
distance, and the increasingly popular Dynamic Time Warp-
ing (DTW). While other researchers have advocated one or
other of these similarity measures, a major contribution of
our work is the ability to support all these measures without
the need to restructure the index. Our framework guaran-
tees no false dismissals and can also be tailored to provide
much faster response time at the expense of slightly reduced
precision/recall. The experimental results demonstrate that
our index can help speed-up the computation of expensive
similarity measures such as the LCSS and the DTW.

Categories and Subject Descriptors: H.2.8 [Database Man-
agement]: Database Applications, Data Mining

Keywords: Trajectories, Longest Common Subsequence, Dy-

namic Time Warping

1. INTRODUCTION
In this work we present an efficient and compact, external

memory index for fast detection of similar trajectories. Tra-
jectory data are prevalent in diverse fields of interest such
as meteorology, GPS tracking, wireless applications, video
tracking [5] and motion capture [18]. Recent advances in
mobile computing, sensor and GPS technology have made it
possible to collect large amounts of spatiotemporal data and

† The research of this author was supported by NSF ITR 0220148, NSF
CAREER 9907477, NSF IIS 9984729, and NRDRP

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. SIGKDD ’03, August 24-27, 2003, Washington,
DC, USA.
Copyright 2003 ACM 1-58113-737-0/03/0008...$5.00.

there is increasing interest in performing data analysis tasks
over such data [17]. In mobile computing, users equipped
with mobile devices move in space and register their loca-
tion at different time instances to spatiotemporal databases
via wireless links. In environmental information systems,
tracking animals and weather conditions is very common
and large datasets can be created by storing locations of ob-
served objects over time. Human motion data generated by
tracking simultaneously various body joints are also multi-
dimensional trajectories. In this field of computer graph-
ics fundamental operations include the clustering of similar
movements, leading to a multitude of applications such as in-
teractive generation of motions [2]. Spatiotemporal data are
also produced by migrating particles in biological sciences,
where the focus can be on the discovery of subtle patterns
during cellular mitoses [19]. In general, any dataset that
involves storage of multiple streams (attributes) of data can
be considered and treated as a multidimensional trajectory.

One very common task for such data is the discovery of
objects that follow a certain motion pattern, for purposes
of clustering or classification. The objective here is to effi-
ciently organize trajectories on disk, so that we can quickly
answer k-Nearest-Neighbors (kNN) queries. A frequent ob-
stacle in the analysis of spatiotemporal data, is the presence
of noise, which can be introduced due to electromagnetic
anomalies, transceiver problems etc. Another impediment
is that objects may move in a similar way, but at different
speeds. So, we would like our similarity model to be robust
to noise, support elastic and imprecise matches.

Choosing the Euclidean distance as the similarity model
is unrealistic, since its performance degrades rapidly in the
presence of noise and this measure is also sensitive to small
variations in the time axis. We concentrate on two simi-
larity models: the first is an extension of Dynamic Time
Warping for higher dimensions. We note that DTW has
been used so far for one-dimensional time series. Here we
present a formulation for sequences of arbitrary dimensions.
The second distance measure is a modification of the Longest
Common Subsequence (LCSS), specially adapted for contin-
uous values. Both measures represent a significant improve-
ment compared to the Euclidean distance. However, LCSS
is more robust than DTW under noisy conditions [20] as fig-
ure 1 shows. Euclidean matching completely disregards the
variations in the time axis, while DTW performs excessive
matchings, therefore distorting the true distance between se-
quences. The LCSS produces the most robust and intuitive
correspondence between points.

By incorporating warping in time as a requirement to

0 20 40 60 80 100 120

Euclidean Matching

0 20 40 60 80 100 120

Time Warping

0 20 40 60 80 100 120

Longest Common Subsequence

Figure 1: A lucid example about the quality matching of the LCSS compared to other distance functions.
The Euclidean distance performs an inflexible matching, while the DTW gives many superfluous and spurious
matchings, in the presence of noise.

our model, our algorithms are automatically challenged with
quadratic execution time. Moreover, these flexible functions
are typically non-metric, which makes difficult the design of
indexing structures. To speed up the execution of a similar-
ity function, one can devise a low cost, upper bounding func-
tion (since the LCSS model captures the similarity, which
is inversely analogous to the distance). We utilize a fast
prefiltering scheme that will return upper bound estimates
for the LCSS similarity between the query and the indexed
trajectories. In addition to providing similarity measures
that guarantee no false dismissals, we also propose approxi-
mate similarity estimates that significantly reduce the index
response time. Finally, we show that the same index can
support other distance measures as well.

Our technique works by splitting the trajectories in multi-
dimensional MBRs and storing them in an R-tree. For a
given query, we construct a Minimum Bounding Envelope
(MBE) that covers all the possible matching areas of the
query under warping conditions. This MBE is decomposed
into MBRs and then probed in the R-tree index. Using the
index we can discover which trajectories could potentially
be similar to the query. The index size is compact and its
construction time scales well with the trajectory length and
the database size, therefore our method can be utilized for
massive datamining tasks.

The main contributions of the paper are:

We present the first external memory index for mul-
tidimensional trajectories, that supports multiple distance
functions (such as LCSS, DTW and Euclidean), without the
need to rebuild the index.

We give efficient techniques for upper(lower) bounding
and for approximating the LCSS(DTW) for a set of trajec-
tories. We incorporate these techniques in the design of an
efficient indexing structure for the LCSS and the DTW.

We provide a flexible method that allows the user to
specify queries of variable warping length, and the technique
can be tuned to optimize the retrieval time or the accuracy
of the solution.

2. RELATED WORK
There has been a wealth of papers that use an Lp dis-

tance family function to perform similarity matching for
1D time-series. Work on multidimensional sequences can
be found in [14, 9]. However, they support only Euclidean
distance, which, as mentioned in the introduction, cannot
capture flexible similarities.

Although the vast majority of database/data mining re-
search on time series data mining has focused on Euclidean
distance, virtually all real world systems that use time series
matching as a subroutine, use a similarity measure which al-
lows warping. In retrospect, this is not very surprising, since
most real world processes, particularly biological processes,
can evolve at varying rates. For example, in bioinformat-
ics, it is well understood that functionally related genes will
express themselves in similar ways, but possibly at different
rates. Because of this, DTW is used for gene expression data
mining [1, 3]. Dynamic Time Warping is a ubiquitous tool
in the biometric/surveillance community. It has been used
for tracking time series extracted from video [7], classifying
handwritten text [16] and even fingerprint indexing [13].

While the above examples testify to the utility of a time
warped distance measure, they all echo the same complaint;
DTW has serious scalability issues. Work that attempted to
mitigate the large computational cost has appeared in [12]
and [21], where the authors use lower bounding measures to
speed up the execution of DTW. However, the lower bounds
can be loose approximations of the original distance, when
the data are normalized. In [15] a different approach is used
for indexing Time Warping, by using suffix trees. Nonethe-
less, the index requires excessive disk space (about 10 times
the size of the original data).

The flexibility provided by DTW is very important, how-
ever its efficiency deteriorates for noisy data, since by match-
ing all the points, it also matches the outliers distorting the
true distance between the sequences. An alternative ap-
proach is the use of Longest Common Subsequence (LCSS),
which is a variation of the edit distance. The basic idea is
to match two sequences by allowing them to stretch, with-
out rearranging the order of the elements but allowing some
elements to be unmatched. Using the LCSS of two se-
quences, one can define the distance using the length of this
subsequence [6]. In [20] an internal memory index for the
LCSS has been proposed. It also demonstrated that while
the LCSS presents similar advantages to DTW, it does not
share its volatile performance in the presence of outliers.

Closest in spirit to our approach, is the work of [10] which,
however, only addresses 1D time-series. The author uses
constrained DTW as the distance function, and surrounds
the possible matching regions by a modified version of a
Piecewise Approximation, which is later stored as equi-length
MBRs in an R-tree. However, by using DTW, such an
approach is susceptible to high bias of outliers. Also, the

fixed MBR size (although simplifies the index operations)
can lead to degenerate approximations of the original se-
quence. Moreover, the embedding of the envelope in the
indexed sequences can slow the index construction time and
limit the user’s query capabilities to a predefined warping
length. The use of LCSS as our primary similarity measure,
lends itself to a more natural use of the R-tree, where the
similarity estimates are simply computed by calculating the
MBR intersection areas. Since the index is not constructed
for a specific warping window, the user can pose queries with
variable warping length.

The purpose of this paper is to reconcile the best of both
worlds. We provide a framework that can support in the
same index, the LCSS, DTW and Euclidean distance func-
tions. The only aspect that changes, is the different repre-
sentation of the query for each distance measure.

3. DISTANCE MEASURES
In this section we present details of how the Dynamic

Time Warping and the LCSS model can be extended to de-
scribe the similarity between trajectories.

3.1 Dynamic Time Warping for 2D trajecto-
ries

We describe an extension in 2D of the original DTW func-
tion as described by Berndt and Clifford [4]. Let A and B
be two trajectories of moving objects with size n and m
respectively, where A = ((ax,1, ay,1), . . . , (ax,n, ay,n)) and
B = ((bx,1, by,1), . . . , (bx,m, by,m)). For a trajectory A, let
Head(A) = ((ax,1, ay,1), . . . , (ax,n–1, ay,n–1)).

Definition 1. The Time Warping between 2-dimensional
sequences A and B is:

DTW (A,B) = Lp((ax,n, ay,n), (bx,m, by,m)) +

min{DTW (Head(A),

Head(B)), DTW (Head(A), B),

DTW (A,Head(B))} (1)

where Lp is any p-Norm. Using dynamic programming and
constraining the matching region within δ, the time required
to compute DTW is O(δ(n +m)). In order to represent an
accurate relationship of distances between sequences with
different lengths, the quantity in equation 1 is normalized
by the length of the warping path. The extension to n di-
mensions is similar. In figure 2 we show an example of time
warping for two trajectories.

3.2 LCSS model for 2D trajectories
The original LCSS model refers to 1D sequences, we must

therefore extend it to the 2D case. In addition, the LCSS
paradigm matches discrete values, however in our model we
want to allow a matching, when the values are within a
certain range in space and time (note that like this, we also
avoid distant and degenerate matchings).

Definition 2. Given an integer δ and a real number 0 <
ε < 1, we define the LCSSδ,ε(A,B) as follows:

LCSSδ,ε(A,B) =





0 if A or B is empty

1 + LCSSδ,ε(Head(A),Head(B))
if |ax,n– bx,m| < ε
and |ay,n– by,m| < ε
and |n – m| ≤ δ

max(LCSSδ,ε(Head(A), B),
LCSSδ,ε(A,Head(B))),
otherwise

0
50

100
150

0

500

1000

1500

100

200

300

400

500

600

X movement

Time

Y
 m

ov
em

en
t

Figure 2: The support of flexible matching in spa-
tiotemporal queries is very important. However, we
can observe that Dynamic Time Warping matches
all points (so the outliers as well), therefore distort-
ing the true distance. In contrast, the LCSS model
can efficiently ignore the noisy parts.

where sequences A and Head(A) are defined similarly as
before. The constant δ controls the flexibility of matching
in time and constant ε is the matching threshold is space.
The aforementioned LCSS model has the same O(δ(n+m))
computational complexity as the DTW, when we only allow
a matching window δ in time [6].

The value of LCSS is unbounded and depends on the
length of the compared sequences. We need to normalize
it, in order to support sequences of variable length. The
distance derived from the LCSS similarity can be defined as
follows:

Definition 3. The distance Dδ,ε expressed in terms of
the LCSS similarity between two trajectories A and B is
given by:

Dδ,ε(A,B) = 1 –
LCSSδ,ε(A,B)

min(n,m)
(2)

4. INDEX CONSTRUCTION
Even though imposing a matching window δ can help

speed up the execution, the computation can still be quadratic
when δ is a significant portion of the sequence’s length.
Therefore, comparing a query to all the trajectories becomes
intractable for large databases. We are seeking ways to avoid
examining the trajectories that are very distant to our query.
This can be accomplished by discovering a close match to
our query, as early as possible. A fast pre-filtering step is
employed that eliminates the majority of distant matches.
Only for some qualified sequences will we execute the costly
(but accurate) quadratic time algorithm. This philosophy
has also been successfully used in [21, 10]. There are certain
preprocessing steps that we follow:

1. The trajectories are segmented into MBRs, which are
stored in an Rtree T.

2. Given a query Q, we discover the areas of possible
matching by constructing its Minimum Bounding Envelope
(MBEQ).

3. MBEQ is decomposed into MBRs that are probed in
the index T.

4. Based on the MBR intersections, similarity estimates
are computed and the exact LCSS (or DTW) is performed
only on the qualified trajectories.

The above notions are illustrated in figure 3 and we explain
in detail how they can be applied for the LCSS case in the
sections that follow.

E. LCSS Upper Bound Estimate = L1+L2+L3

A. Query Q

C. Envelope Splitting

B. Query Envelope

D. Sequence MBRs

L1 L2 L3

Figure 3: An example of our approach (in 1D for
clarity); A query is extended into a bounding en-
velope, which in turn is also split into the resulting
MBRs. Overlap between the query and the index
MBRs suggest areas of possible matching.

4.1 Bounding the Matching Regions
Let us first consider a 1D time-series and let a sequence

A be (ax,1, . . . , ax,n). Ignoring for now the parameter ε, we
would like to perform a very fast LCSSδ match between
sequence A and some query Q. Suppore that we replicate
each point Qi for δ time instances before and after time i.
The envelope that includes all these points defines the areas
of possible matching. Everything outside this envelope can
never be matched.

10 20 30 40 50 60 70

40 pts 6 pts

2δ

ε

QA

Figure 4: The Minimum Bounding Envelope (MBE)
within δ in time and ε in space of a sequence. Ev-
erything that lies outside this envelope can never be
matched.

We call this envelope, the Minimum Bounding Envelope
(MBE) of a sequence. Also, once we incorporate the match-

ing within ε in space, this envelope should extent ε above
and below the original envelope (figure 4). The notion of the
bounding envelope can be trivially extended in more dimen-
sions, whereMBE(δ, ε) for a 2D trajectoryQ = ((qx,1, qy,1),
. . . , (qx,n, qy,n) covers the area between the following time-
series:

EnvLow ≤MBE(δ, ε) ≤ EnvHigh, where:

{
EnvHigh[i] = max(Q[j] + epsilon) , |i–j| ≤ δ
EnvLow[j] = min(Q[j] – epsilon) , |i–j| ≤ δ

The LCSS similarity between the envelope of Q and a se-
quence A is defined as:

LCSS(MBEQ, A) =

n∑

i=1

{
1 if A[i] within envelope
0 otherwise

For example, in figure 4 the LCSS similarity betweenMBEQ
and sequence A is 46, as indicated in the figure. This value
represents an upper bound for the similarity of Q and A.
We can use the MBEQ to compute a lower bound on the
distance between trajectories:

Lemma 1. For any two trajectories Q and A the following
holds: Dδ,ε(MBEQ, A) ≤ Dδ,ε(Q,A),

Proof (Sketch): Dδ,ε(MBEQ, A) = 1 –
LCSSδ,ε(MBEQ,A)

min(|Q|,|A|) ,

therefore it is sufficient to show that: LCSSδ,ε(MBEQ, A) ≥
LCSSδ,ε(Q,A). This is true since MBEQ by construction
contains all possible areas within δ and ε of the query Q.
Therefore, no possible matching points will be missed. 2

The previous lemma provides us with the power to create
an index that guarantees no false dismissals. However, this
lower bound refers to the raw data. In the sections that fol-
low, we will ’split’ the MBE of a trajectory, into a number
of Minimum Bounding Rectangles (MBRs), to accommo-
date their storage into a multidimensional R-tree. We will
show that the above inequality still holds between trajectory
MBRs.

The MBR generation procedure is orthogonal to our ap-
proach, since any segmentation methodology can be applied
to our framework. Therefore, the description of the poten-
tial MBR generation methods (and of our implementation
choice) will be delayed until later.

5. QUICK PRUNING OF DISSIMILAR TRA-
JECTORIES

Suppose that we have an index with the segmented tra-
jectories and the user provides a query Q. Our goal is the
discovery of the k closest trajectories to the given query, ac-
cording to the LCSS similarity. A prefiltering step will aid
the quick discovery of a close match to the query, helping
us discard the distant trajectories without using the costly
quadratic algorithm. Therefore, in this phase, we compute
upper bound estimates of the similarity between the query
and the indexed sequences using their MBRs.

Below we describe the algorithm to find the closest tra-
jectory to a given query:

Input: Query Q, Index I with trajectory MBRs, Method
Output: Most similar trajectory to Q.

Box Env = constructMBEδ,ε(Q);
Vector VQ = CreateMBRs(Env);

// VQ contains a number of boxes.
Priority queue PQ ← ∅;

// PQ keeps one entry per trajectory sorted
// according to the similarity estimate

for each box B in VQ:
V = I.intersectionQuery(B);

// V contains all trajectory MBRs that intersect with B.

if Method == Exact: // upper bound
PQ ← computeL-SimilarityEstimates(V, B);

else: // approximate
PQ ← computeV-SimilarityEstimates(V, B);

BestSoFar = 0; Best← ∅;
while PQ not empty:
E ← PQ.top;
if E.estimate < BestSoFar: break;
else:
D = computeLCCSδ,ε(Q,E); // exact
if D > BestSoFar:
BestSoFar = D; Best← E;

Report Best;

The above algorithm can be adjusted to return the k-
NN sequences, simply by comparing with the kth bestSoFar
match. Next, we examine the possible similarity estimates.
Some of them guarantee that will find the best match (they
lower bound the original distance or upper bound the origi-
nal similarity), while other estimates provide faster but ap-
proximate results.

5.1 Similarity Estimates
Here we will show how to compute estimates of the LCSS

similarity, based on the geometric properties of the trajec-
tory MBRs and their intersection. An upper bound estimate
is provided by the length of the MBR intersection and an
approximate estimate is given as a parameter of the inter-
secting volume. To formalize these notions, first we present
several operators. Then we will use these operators to derive
the estimates.

5.1.1 Estimates for the LCSS
Each trajectory T can be decomposed into a number of

MBRs. The ith 3D MBR of T consists of six numbers:
MT,i = {tl, th, xl, xh, yl, yh}. Now, let us define the oper-

ators
⋂(c)
t ,

⋂(p)
t and

⋂
V between two 3D MBRs MP,i and

MR,j , belonging to objects P and R, respectively:

1.
⋂(c)
t (MP,i,MR,j) = ||Intersection||t,

where MR,j .xl ≤MP,i.xl ≤MR,j .xh and
MR,j .xl ≤MP,i.xh ≤MR,j .xh and
MR,j .yl ≤MP,i.yl ≤MR,j .yh and
MR,j .yl ≤MP,i.yh ≤MR,j .yh

or similarly by rotating MR,j
MP,i

Therefore, this operator computes the time intersec-
tion of two MBR when one fully contains the other in
the x,y dimensions.

2.
⋂(p)
t (MP,i,MR,j) = ||Intersection||t, otherwise

3.
⋂
V (MP,i,MR,j) = ||Intersection||t∗||Intersection||x∗
||Intersection||y

We can use upper bound or approximate estimates for the
similarity:

Common Volume Intersection

The Intersection of MBRs is fully

contained within one MBR

Intersection between two MBRs

time

y

x

Figure 5: Top left: Intersection recorded in list
Lt,partial. Top right: Intersection recorded in list
Lt,complete. Bottom left: Percentage of Volume In-
tersection kept in LV .

1. Upper bound estimates (L-similarity estimate).
Such estimates are computed using the following data-structures:

The list Lt,complete , an element L(P) of which is defined
as:

L(P) =
∑

m

∑

n

MQ,m

⋂(c)

t
MP,n

where Q is a query and P is a trajectory in the index. So the
list stores for each trajectory the total time that its MBRs
intersected with the query’s MBRs. We record into this list
only the intersections, where a query MBR is fully contained
in all spatial dimensions by a trajectory MBR (or vice versa
-it is equivalent. See figure 5, top right).

The list Lt,partial, an element L(P) of which is defined as:

L(P) =
∑

m

∑

n

MQ,m

⋂(p)

t
MP,n

This list records for each sequence the total intersection
in time for those query MBRs that are not fully contained
within the x,y dimensions by the trajectory MBRs (or vice
versa. Figure 5, top left).

Regarding a query Q, for any trajectory P the sum of
Lt,complete(P) + Lt,partial(P) will provide an upper bound
on the similarity of P and Q.

The reason for the distinction of the L-similarity estimate
in two separate lists derives from the fact that the esti-
mates stored in list Lt,partial can significantly overestimate
the LCSS similarity. If one wishes to relax the accuracy,
in favor of enhanced performance, it is instructive to give a
weight 0 < wp < 1 to all estimates in list Lt,partial. Even
though now we may miss the best match to our query, we
are going to find a close match in less time. This weighted
approach is used when we are seeking for approximate, but
very good quality answers, however it will not be explained
further due to space limitations.

2. Approximate estimates (V-similarity estimate).
This second estimate is based on the intersecting volume of
the MBRs. This type of estimates are stored in list LV :

Any element LV (P) of list LV records similarity estimates
between trajectory P and query Q, based on the total vol-
ume intersection between the MBRs of P and Q.

L(P) =
1

length(P)

∑

m

∑

n

MQ,m

⋂
V MP,n

||MQ,m||V
||MQ,m||t

where ||M ||V denotes the volume of MBR M and ||M ||t its
length on the time axis.

The L-similarity overestimates the LCSSδ,ε between two
sequences A and B and so it can be deployed for the design
of an index structure.

Lemma 2. The use of the L-similarity estimate upper bounds
the LCSSδ,ε similarity between two sequences A and B and
therefore does not introduce any false dismissals.

The V-similarity estimate can be used for approximate
query answering. Even though it does not guarantee the
absence of false dismissals, the results will be close to the
optimal ones with high probability. Also, because this es-
timate provides a tighter approximation to the original dis-
tance, we expect faster response time. Indeed, as we show in
the experimental section, the index performance is boosted,
while the error in similarity is frequently less then 5%.

5.2 Estimates for the DTW
When the distance function used is the Time Warping,

using the index we obtain a lower bound of the actual dis-
tance. In this case we have the inverse situation from the
LCSS; instead of calculating the degree of overlap between
the MBRs of the indexed trajectories and the query, we eval-
uate the distance between the MBRs. The overall distance
between the MBRs underestimates the true distance of the
trajectories, and no false dismissals are introduced. Using
the MBRs we can also calculate upper bound estimates on
the distance, which hadn’t been exploited in previous work
[10, 22]. Sequences with lower bound larger than the small-
est upper bound can be pruned. With this additional pre-
filtering step we can gain on average an additional 10-15%
speedup in the total execution time.

Due to space limitations only a visual representation of
this approach is provided in figure 6.

6. MBR GENERATION
Given a multidimensional time-series (or an MBE) our

objective is to minimize the volume of the sequence using
k MBRs. Clearly, the best approximation of a trajectory
(or an MBE) using a fixed number of MBRs is the set of
MBRs that completely contain the sequence and minimize
the volume consumption. We can show the following lemma:

Lemma 3. Minimizing the volume of the Minimum Bound-
ing Envelope, minimizes the expected similarity approxima-
tion error.

Three different approaches are considered:

1. k-Optimal. We can discover the k MBRs of a sequence
that take up the least volume, using a dynamic programming
algorithm that requires O(n2k) time ([8]), where n is the
length of the given sequence. Since this approach is not
reasonable for large databases, we are motivated to consider
approximate and faster solutions.

2. Equi-Split. This technique produces MBRs of fixed
length l. It is a simple approach with cost linear in the
length of a sequence. However, in pathological cases in-
creasing the number of splits can result to larger space uti-
lization,therefore the choice of the MBR length becomes a
critical parameter (see figure 7 for an example).

A. Query Q B. Query Envelope

C. Envelope Splitting D. Sequence MBRs

E. MINDIST(Q,R) F. MAXDIST(Q,R)

Figure 6: A visual intuition of the DTW indexing
technique (the one-dimensional case is shown for
clarity). The original query (A) is enclosed in a
minimum-bounding envelope (B) like the LCSS ap-
proach. The MBE is split into its MBRs using equi
or greedy split (fig. (C)). The candidate sequences
in the database have their MBRs stored in the in-
dex (D). Between the query and any sequence in
the index, the minimum and maximum distance can
be quickly determined by examining the distance
between the MBRs and the query’s bounding enve-
lope, as represented by the arrows in (E) and (F).

3. Greedy-Split. The Greedy approach is our implemen-
tation choice in this paper. Initially we assign an MBR to
each of the n sequence points and at each subsequent step
we merge the consecutive MBRs that will introduce the least
volume consumption. The algorithm has a running time of
O(nlogn). We can see a sketch of the method in fig. 8. Al-
ternatively, instead of assigning the same number of splits
to all objects, according to our space requirements we can
assign a total of K splits to be distributed among all objects.
This method can provide better results, since we can assign
more splits for the objects that will yield more space gain.
Also, this approach is more appropriate when one is dealing
with sequences of different lengths. The complexity of this
approach is O(K +NlogN), for a total of N objects ([8]).

Input: A spatiotemporal trajectory T and an integer k denoting
the number of final MBRs.

For 0 ≤ i < n compute the volume of the MBR produced by
merging Ti and Ti+1. The results are stored in a priority queue.

While #MBRs < k: Using the priority queue, merge the pair
of consecutive MBRs that yield the smallest increase in volume.
Delete the two merged MBRs and insert the new one in the priority
queue.

Output: A set of MBRs that cover T .

Figure 8: The greedy algorithm for producing k
MBRs that cover the trajectory T .

After a trajectory is segmented the MBRs can be stored
in a 3D-Rtree. Using the greedy split each additional split
will always lead to smaller (or equal) volume (figure 7). A
similar greedy split algorithm is also used for splitting the
MBE of the query trajectory Q.

(a)

Equi−Split, 8 MBRs, Gain = 5.992

(b)

Equi−Split, 9 MBRs, Gain = 5.004

(c)

Greedy−Split, 8MBRs, Gain = 9.157

(d)

Greedy−Split, 9MBRs, Gain = 10.595

Figure 7: (a): 8 MBRs produced using equi-Split. The volume gain over having 1 MBR is 5.992. (b):
Segmenting into 9 MBRs decreases the volume gain to 5.004. So, disk space is wasted without providing
a better approximation of the trajectory. (c): 8 MBRs using greedy-Split. The volume gain over having 1
MBR is 9.157. (d): Every additional split will yield better space utilization. Segmentation into 9 MBRs
increases volume gain to 10.595.

7. SUPPORTING MULTIPLE MEASURES
The application of the Minimum Bounding Envelope only

on the query suggests that user queries are not confined to
a predefined and rigid matching window δ. The user can
pose queries of variable warping in time. In some datasets,
there is no need to perform warping, since the Euclidean
distance performs acceptably [11]. In other datasets, by
using the Euclidean distance we can find quickly some very
close matches, while using warping we can distinguish more
flexible similarities. So, we can start by using a query with
δ = 0 (no bounding envelope), and increase it progressively
in order to find more flexible matches (figure 9).

Therefore, our framework offers the unique advantage that
multiple distance functions can be supported in a single in-
dex. The index sequences have been segmented without any
envelope applied on them and never have to be adjusted
again. For different measures, the aspects that change are,
the creation of the query envelope and the type of operation
between MBRs. In order to pose queries based on Euclidean
distance we follow the steps:

The query is segmented with no envelope applied on it.
TheminDist andmaxDist estimators for the Euclidean

distance are derived by calculating the distance between the
query and index MBRs, just like in the DTW case.

0
 50
 100
 150
 200
 250
 300
 350

�
200

�
150

�
100

50

0

50

100

Index Trajectory

Query

Figure 9: By incorporating the bounding envelope
on the query, our approach can support Euclidean
distance, constrained or full warping. This is accom-
plished by progressively expanding the MBE.

8. EXPERIMENTAL EVALUATION
In this section we compare the effectiveness of various

splitting methods and we demonstrate the superiority of our
lower bounding technique (for the DTW) compared to other
proposed lower bounds. We describe the datasets we used

and present comprehensive experiments regarding the index
performance for the two similarity estimates. In addition,
we evaluate the accuracy of the approximate estimates. All
experiments conducted were run on an AMD Athlon 1.4 Ghz
with 1GB RAM and 60GB of hard drive.

1. ASL 2. Buoy Sensor 3. Video Track 1 4. Flutter

5. Marine Mammals 6. Word Tracking 7. Random Walk 8. Video Track 2

Figure 10: Datasets used for testing the efficiency
of various MBR generation methods.

8.1 MBR Generation Comparison
The purpose of our first experiment is to test the space

consumption of the presented MBR generation methods. We
have used eight datasets with diverse characteristics, in or-
der to provide objective results.

We evaluate the space consumption, by calculating the
“Average Volume Gain” (AvgV olGain), which is defined
as the percentage of volume when using i MBRs, over the
volume when using only 1 MBR, normalized by the maxi-
mum gain provided over all methods (for various number of
splits).

Random

Equi

Greedy
1

2
3

4
5

6
7

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dataset

A
ve

ra
ge

 V
ol

um
e

G
ai

n

Figure 11: The greedy-split MBR generation algo-
rithm presents the highest volume gain, by produc-
ing MBRs that consume consistently less space, over
a number of datasets and for diverse number of gen-
erated MBRs

DATASET EQs20,d5 GRs20,d5 EQs40,d5 GRs40,d5 EQs20,d5 GRs20,d5 EQs40,d5 GRs40,d5 LB-Kim LB-Yi

LCSS DTW

ASL 0.732 0.799 0.825 0.856 0.449 0.632 0.588 0.756 0.1873 0.2530

VT1 0.260 0.339 0.453 0.511 0.087 0.136 0.230 0.266 0.0838 0.1692

Marine 0.719 0.750 0.804 0.814 0.226 0.506 0.308 0.608 0.2587 0.4251

Word 0.627 0.666 0.761 0.774 0.311 0.361 0.466 0.499 0.0316 0.2116

Random 0.596 0.652 0.701 0.741 0.322 0.384 0.440 0.491 0.1389 0.2067

VT2 0.341 0.431 0.498 0.569 0.210 0.296 0.363 0.437 0.2100 0.5321

Table 1: Some indicative results of how close our similarity estimates are to the exact value (for 20 and 40
splits, & δ = 5%). For all datasets the greedy-split approach provides the closest similarity estimates to the
actual similarity.

AvgV olGain is a number between 0 and 1, where higher
numbers indicate increased volume gain (or less space con-
sumption) against the competitive methods. In figure 11
we observe the average volume gain for the eight datasets.
The greedy-split algorithm produced MBRs that took at
least half the space, compared to equi-split. The equi-split
offers slightly better results, than producing MBRs at ran-
dom positions. The volume gain of greedy-split was less,
only for the buoy sensor, which is a very busy and unstruc-
tured signal. This experiment validates that our choice to
use the greedy-split method was correct. Since, the indexed
MBR trajectories will take less space, we also expect tighter
similarity estimates, therefore fewer false positives.

8.2 Tightness of Bounds
In table 1 we show how close our similarity estimates are

(for LCSS and DTW) to the actual similarity between se-
quences. Numbers closer to 1, indicate higher similarity
to the value returned by the exact algorithm. To our best
knowledge, this paper introduces the first upper bounding
technique for the LCSS. For DTW there have been a few
approaches to provide a lower bound of the distance; we re-
fer to them as LB-Kim [12] and LB-Yi [21]. These lower
bounds originally referred to 1D time-series; here we extend
them in more dimensions, in order to provide unambiguous
results about the tightness of our estimates. Note that the
previously proposed methods operate on the raw data. Our
approach can still provide tighter estimates, while operat-
ing only on the trajectory MBRs. Using the raw data our
experiments indicate that we are consistently 2-3 times bet-
ter than the best alternative approach. However, since our
index operates on the segmented time-series we only report
the results on the MBRs.

The greedy-split method approximates the similarity con-
sistently tighter than the equi-split. In table 1 only the
results for δ = 5% of the query’s length are reported, but
similar results are observed for increasing values of δ. It is
evident from the table that using our method we can provide
very tight lower bounds of the actual distance.

8.3 Matching Quality
We demonstrate the usefulness of our similarity measures

in a real world dataset. The Library of Congress maintains
thousands of handwritten manuscripts, and there is an in-
creasing interest to perform automatic transcribing of these
documents. Given the multiple variations of each word and
due to the manuscript degradations, this is a particularly
challenging task and the need for a flexible and robust dis-
tance function is essential.

We have applied the LCSS and DTW measures on word

Figure 12: Results for a real world application.
3NN reported for each query, using Dynamic Time
Warping to match features extracted from scanned
manuscript words.

images extracted from a 10 page scanned manuscript. 4-
dimensional time-series features have originally been extracted
for each word. Here we maintain the 2 least correlated time-
series features and treat each word as a trajectory. In figure
12 we observe the 3-KNN results using DTW for various
word queries. The results are very good, showing high ac-
curacy even for similarly looking words. Analogous results
have been obtained using the LCSS.

8.4 Index performance
We tested the performance of our index using the upper

bound and the approximate similarity estimates, and com-
pared it to the sequential scan. Because of limited space,
the majority of the figures record the index performance us-
ing the LCSS as a similarity measure. The performance
measure used is the total computation time required for the
index and the sequential scan to return the nearest neigh-
bor for the same one hundred queries. For the linear scan,
one can also perform early termination of the LCSS (or the
DTW) computation. Therefore, the LCSS execution can
be stopped at the point where one is sure that the current
sequence will not be more similar to the query than the
bestSoFar. We call this optimistic linear scan. Pessimistic
linear scan, is the one than does not reuse the previously
computed similarity values and can be an accurate time
estimate, when the query match resides at the end of the
dataset. We demonstrate the index performance relative to

1024 2048 4096 8192 16384 32768
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Dataset size

Ti
m

e
R

at
io

 C
om

pa
re

d
to

 L
in

ea
r S

ca
n

δ=5%

Optimistic
Pessimistic
Linear Scan

1024 2048 4096 8192 16384 32768
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Dataset size

Ti
m

e
R

at
io

 C
om

pa
re

d
to

 L
in

ea
r S

ca
n

δ=10%

Optimistic
Pessimistic
Linear Scan

1024 2048 4096 8192 16384 32768
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Dataset size

Ti
m

e
R

at
io

 C
om

pa
re

d
to

 L
in

ea
r S

ca
n

δ=20%

Optimistic
Pessimistic
Linear Scan

Figure 13: Index performance. For small warping windows the index can be up to 5 times faster than
sequential scan without compromising accuracy. The gray regions indicate the range of potential speedup.

1024 2048 4096 8192 16384 32768
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Dataset size

Ti
m

e
R

at
io

 C
om

pa
re

d
to

 L
in

ea
r S

ca
n

δ=5%

Optimistic
Pessimistic
Linear Scan

1024 2048 4096 8192 16384 32768
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Dataset size

Ti
m

e
R

at
io

 C
om

pa
re

d
to

 L
in

ea
r S

ca
n

δ=10%

Optimistic
Pessimistic
Linear Scan

1024 2048 4096 8192 16384 32768
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Dataset size

Ti
m

e
R

at
io

 C
om

pa
re

d
to

 L
in

ea
r S

ca
n

δ=20%

Optimistic
Pessimistic
Linear Scan

Figure 14: Using the approximate similarity estimates the response time can be more than 7 times faster.

both types of linear scan, because this provides a realistic
upper or lower bound on the index speedup.

8.4.1 Dataset description
In order to test the index scalabilility we needed to con-

struct large realistic multidimensional datasets. To this end,
we utilized the aggregation of our eight real datasets as
seeds, for generating more variations of them. We create
multiple copies of the original trajectories by incorporating
the following features:

Addition of small variations in the original trajectory
pattern

Addition of random compression and decompression in
time

The final dataset consisted of 210 . . . 216 trajectories. Tak-
ing under consideration that the average trajectory size is
around 500 points, this resulted to a database with more
than 16 million 2D points. The trajectories have been nor-
malized by subtracting the average value in each direction of
movement. All data and queries can be obtained by emailing
the first author.

8.4.2 Results on the upper bound Estimates
The index performance is influenced be three parameters:

the size of the dataset, the warping length δ (as a percentage
of the query’s length) and the number of trajectory MBRs.
For all experiments the parameter ε (matching in space) was
set to std/2 of the query, which provided good and intuitive
results.

Dataset size: In figure 13 we can observe how the
performance of the index scales with the database size (for
various lengths of matching window). We record the index
response time relative to both optimistic and pessimistic lin-
ear scan. Therefore, the gray region in the figures indicates
the range of possible speedup. It is evident that the early
termination feature of the sequential scan can significantly

assist its performance. The usefulness of an index becomes
obvious for large dataset sizes, where the quadratic compu-
tational cost dominates the I/O cost of the index. For these
cases our approach can be up to 5 times faster than linear
scan. In figure 15 we also demonstrate the pruning power of
the index, as a true indicator (not biased by any implemen-
tation details) about the efficacy of our index. Using the
index we perform 2-5 times fewer LCSS computations than
the linear scan. We observe similar speedup when using the
DTW as the distance function in figure 17.

Parameter δ: The index performance is better for
smaller warping lengths (parameter δ). The experiments
record the performance for warping from 5% to 20% of the
query’s length. Increasing δ values signify larger bounding
envelopes around the query, therefore larger space of search
and less accurate similarity estimates. The graphs suggest
that an index cannot not be useful under full warping (when
the data are normalized).

Number of Splits: Although greater number of MBRs
for each trajectory implies better volume utilization, nonethe-
less more MBRs also lead to increased I/O cost. When we
are referring to x% splits, it means that we have assigned a
total of 100/x(

∑n
i=1(||Ti||)) splits, for all sequences Ti. In

our figures we provide the 5% splits scenario for the MBRs,
which offers better performance than 10% and 20% splits,
since for the last two cases the I/O cost negates the effect of
the better query approximation. The index space require-
ments for 5% splits is less than a quarter of the dataset size.

8.4.3 Results on the approximate Estimates
Here we present the index performance when the volume

intersections of the MBRs are used as estimates of the sim-
ilarity and the results are shown in figure 14. We observe
that using this approximate similarity estimate, our index
performance is boosted up. The use of the V-similarity es-
timate leads to more tight approximations of the original
similarity compared to the L-similarity estimate, however

1024 2048 4096 8192 16384 32768
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Dataset size

R
at

io
 o

f L
C

S
S

 p
er

fo
rm

ed
 b

y
th

e
in

de
x

Pruning Power compared to Linear Scan

5% splits
10% splits
20% splits
Linear Scan

 δ=5%

 δ=10%

 δ=20%

Figure 15: Each gray band indi-
cates (for a certain warping win-
dow δ) the percentage of LCSS
computations conducted by the in-
dex compared to linear scan.

1024 2048 4096 8192 16384 32768
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dataset size

A
ve

ra
ge

 s
im

ila
rit

y
E

rr
or

Similarity Error, 5% splits

δ=5%
δ=10%
δ=20%

Figure 16: Using the V-similarity
estimate, we can retrieve answers
faster with very high accuracy.
The LCSS similarity is very close
(2-10%) to the exact answer re-
turned by the sequential scan.

1024 2048 4096 8192 16384 32768
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Dataset size

Ti
m

e
R

at
io

 C
om

pa
re

d
to

 L
in

ea
r S

ca
n

δ=5%

Optimistic
Pessimistic
Linear Scan

Figure 17: Index Performance us-
ing DTW as the distance measure.
(δ = 5%). We can observe up to 5
times speedup.

now we may miss finding the best match.
Naturally, comes the question of the quality of the re-

sults. We capture this by calculating the absolute difference
between the similarity of the best match returned by the
index, and the best match found by the sequential scan for
each query. Then we average the results over a number of
queries |q|. Therefore, the Average Similarity Error (ASE)
is:

ASE = 1
|q|
∑|q|
i=1(|BestMatchindex – BestMatchexhaustive|)

The results are shown in figure 16. We can see that the
similarity returned by the V-similarity estimate is approxi-
mately within 5% of the actual similarity (5% splits used).
Therefore, by providing two similarity estimates the user
can decide for the trade-off between the expedited execution
time and the quality of results. Since by using the latter es-
timator we can significantly increase the performance of the
index, this is the approach we recommend for mining large
datasets.

9. CONCLUSIONS AND FUTURE WORK
In this paper we have presented an external memory in-

dexing method for discovering similar multidimensional time-
series. The unique advantage of our approach is that it
can accommodate multiple distance measures. The method
guarantees no false dismissals and depicts a significant ex-
ecution speed up for the LCSS and DTW compared to se-
quential scan. We have shown the tightness of our similarity
estimates and demonstrated the usefulness of our measures
for challenging real world applications. We hope that our
effort can act as a bridge between metric and non-metric
functions, as well as a tool for understanding better their
strengths and weaknesses. In the future we plan to investi-
gate the combination of several heuristics, in order to pro-
vide even tighter estimates.

Acknowledgements: We would like to thank Margrit Betke
for providing us the Video Track I and II datasets. We also
feel obliged to T. Rath and R. Manmatha for kindly provid-
ing the manuscript words dataset.

10. REFERENCES
[1] J. Aach and G. Church. Aligning gene expression time series

with time warping algorithms. In Bioinformatics, Volume 17,
pages 495–508, 2001.

[2] O. Arikan and D. Forsyth. Interactive motion generation from
examples. In Proc. of ACM SIGGRAPH, 2002.

[3] Z. Bar-Joseph, G. Gerber, D. Gifford, T. Jaakkola, and
I. Simon. A new approach to analyzing gene expression time
series data. In Proc. of 6th RECOMB, pages 39–48, 2002.

[4] D. Berndt and J. Clifford. Using Dynamic Time Warping to
Find Patterns in Time Series. In Proc. of KDD Workshop,
1994.

[5] M. Betke, J. Gips, and P. Fleming. The camera mouse: Visual
tracking of body features to provide computer access for people
with severe disabilities. In IEEE Transactions on Neural
Systems and Rehabilitation Engineering, Vol. 10, No. 1, 2002.

[6] G. Das, D. Gunopulos, and H. Mannila. Finding Similar Time
Series. In Proc. of the First PKDD Symp., pages 88–100, 1997.

[7] D. Gavrila and L. Davis. Towards 3-d model-based tracking
and recognition of human movement: a multi-view approach. In
Int. Workshop on Face and Gesture Recognition.

[8] M. Hadjieleftheriou, G. Kollios, V. Tsotras, and D. Gunopulos.
Efficient indexing of spatiotemporal objects. In Proc. of 8th
EDBT, 2002.

[9] T. Kahveci, A. Singh, and A. Gurel. Similarity searching for
multi-attribute sequences. In Proc. of SSDBM, 2002.

[10] E. Keogh. Exact indexing of dynamic time warping. In Proc. of
VLDB, 2002.

[11] E. Keogh and S. Kasetty. On the need for time series data
mining benchmarks: A survey and empirical demonstration. In
Proc. of SIGKDD, 2002.

[12] S. Kim, S. Park, and W. Chu. An index-based approach for
similarity search supporting time warping in large sequence
databases. In In Proc. of 17th ICDE, 2001.

[13] Z. Kovács-Vajna. A fingerprint verification system based on
triangular matching and dynamic time warping. In IEEE
Transactions on PAMI, Vol. 22, No. 11.

[14] S.-L. Lee, S.-J. Chun, D.-H. Kim, J.-H. Lee, and C.-W. Chung.
Similarity Search for Multidimensional Data Sequences. Proc.
of ICDE, pages 599–608, 2000.

[15] S. Park, W. Chu, J. Yoon, and C. Hsu. Efficient Searches for
Similar Subsequences of Different Lengths in Sequence
Databases. In Proc. of ICDE, pages 23–32, 2000.

[16] T. Rath and R. Manmatha. Word image matching using
dynamic time warping. In Tec Report MM-38. Center for
Intelligent Information Retrieval, University of
Massachusetts Amherst, 2002.

[17] J. F. Roddick and K. Hornsby. Temporal, Spatial and
Spatio-Temporal Data Mining. 2000.

[18] M. Shimada and K. Uehara. Discovery of correlation from
multi-stream of human motion. In Discovery Science 2000.

[19] R. E. Valdes-Perez and C. A. Stone. Systematic detection of
subtle spatio-temporal patterns in time-lapse imaging ii.
particle migrations. In Bioimaging 6(2), pages 71–78, 1998.

[20] M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar
multidimensional trajectories. In Proc. of ICDE, 2002.

[21] B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval
of similar time sequences under time warping. In Proc. of
ICDE, pages 201–208, 1998.

[22] Y. Zhu and D. Shasha. Query by humming: a time series
database approach. In Proc. of SIGMOD, 2003.

