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ABSTRACT
In many applications that track and analyze spatiotemporal
data, movements obey periodic patterns; the objects follow
the same routes (approximately) over regular time intervals.
For example, people wake up at the same time and follow
more or less the same route to their work everyday. The dis-
covery of hidden periodic patterns in spatiotemporal data,
apart from unveiling important information to the data an-
alyst, can facilitate data management substantially. Based
on this observation, we propose a framework that analyzes,
manages, and queries object movements that follow such pat-
terns. We define the spatiotemporal periodic pattern mining
problem and propose an effective and fast mining algorithm
for retrieving maximal periodic patterns. We also devise a
novel, specialized index structure that can benefit from the
discovered patterns to support more efficient execution of
spatiotemporal queries. We evaluate our methods experi-
mentally using datasets with object trajectories that exhibit
periodicity.

Categories & Subject Descriptors: H.2.8 [Database Man-
agement]: Database Applications - Data Mining
Keywords: Spatiotemporal data, Trajectories, Pattern min-
ing, Indexing

1. INTRODUCTION
The efficient management of spatiotemporal data has gai-

ned much interest during the past few years [10, 13, 4, 12],
mainly due to the rapid advancements in telecommunications
(e.g., GPS, Cellular networks, etc.), which facilitate the col-
lection of large datasets of such information. Management
and analysis of moving object trajectories is challenging due
to the vast amount of collected data and novel types of spa-
tiotemporal queries.
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In many applications, the movements obey periodic pat-
terns; i.e., the objects follow the same routes (approximately)
over regular time intervals. Objects that follow approximate
periodic patterns include transportation vehicles (buses, boats,
airplanes, trains, etc.), animal movements, mobile phone users,
etc. For example, Bob wakes up at the same time and then
follows, more or less, the same route to his work everyday.
Based on this observation, which has been overlooked in past
research, we propose a framework for mining, indexing and
querying periodic spatiotemporal data.

The problem of discovering periodic patterns from histor-
ical object movements is very challenging. Usually, the pat-
terns are not explicitly specified, but have to be mined from
the data. The patterns can be thought of as (possibly non-
contiguous) sequences of object locations that reappear in
the movement history periodically. Moreover, since we do
not expect an object to visit exactly the same locations at
every time instant of each period, the patterns are not rigid
but differ slightly from one occurrence to the next. The pat-
tern occurrences may also be shifted in time (e.g., due to
traffic delays or Bob waking up late again). The approx-
imate nature of patterns in the spatiotemporal domain in-
creases the complexity of mining tasks. We need to discover,
along with the patterns, a flexible description of how they
variate in space and time. Previous approaches have stud-
ied the extraction of patterns from long event sequences [5,
7]. We identify the difference between the two problems and
propose novel techniques for mining periodic patterns from
a large historical collection of object movements.

In addition, we design a novel indexing scheme that ex-
ploits periodic pattern information to organize historical spa-
tiotemporal data, such that spatiotemporal queries are effi-
ciently processed. Since the patterns are accurate approx-
imations of object trajectories, they can be managed in a
lightweight index structure, which can be used for pruning
large parts of the search space without having to access the
actual data from storage. This index is optimized for provid-
ing fast answers to range queries with temporal predicates.
Effective indexing is not the only application of the mined
patterns; since they are compact summaries of the actual tra-
jectories, we can use them to compress and replace historical
data to save space. Finally, periodic patterns can predict
future movements of objects that follow them.

The rest of the paper is organized as follows. Section 2
presents related work. In Section 3, we give a concrete formu-
lation of periodic patterns in object trajectories and propose
effective mining techniques. Section 4 presents the indexing



scheme that exploits spatiotemporal patterns. We present a
concise experimental evaluation of our techniques in Section
5. Finally, Section 6 concludes with a discussion about future
work.

2. RELATED WORK
Our work is related to two research problems. The first

is data mining in spatiotemporal and time-series databases.
The second is management of spatiotemporal data. Previous
work on spatiotemporal data mining focuses on two types of
patterns: (i) frequent movements of objects over time and (ii)
evolution of natural phenomena, such as forest coverage. [14]
studies the discovery of frequent patterns related to changes
of natural phenomena (e.g., temperature changes) in spatial
regions. In general, there is limited work on spatiotemporal
data mining, which has been treated as a generalization of
pattern mining in time-series data (e.g., see [14, 9]). The
locations of objects or the changes of natural phenomena
over time are mapped to sequences of values. For instance,
we can divide the map into spatial regions and replace the
location of the object at each timestamp, by the region-id
where it is located. Similarly, we can model the change of
temperature in a spatial region as a sequence of tempera-
ture values. Continuous domains of the resulting time-series
data are discretized, prior to mining. In the case of multi-
ple moving objects (or time-series), trajectories are typically
concatenated to a single long sequence. Then, an algorithm
that discovers frequent subsequences in a long sequence (e.g.,
[16]) is applied.

Periodicity has only been studied in the context of time-
series databases. [6] addresses the following problem. Given
a long sequence S and a period T , the aim is to discover
the most representative trend that repeats itself in S every
T timestamps. Exact search might be slow; thus, [6] pro-
poses an approximate search technique based on sketches.
However, the discovered trend for a given T is only one and
spans the whole periodic interval. In [8], the problem of find-
ing association rules that repeat themselves in every period of
a data sequence is addressed. The discovery of multiple par-
tial periodical patterns that do not appear in every periodic
segment was first studied in [5]. A version of the well-known
Apriori algorithm [1] was adapted for the problem of finding
patterns of the form *AB**C, where A, B, and C are specific
symbols (e.g., event types) and * could be any symbol (T =
6, in this example). This pattern may not repeat itself in ev-
ery period, but it must appear at least min sup times, where
min sup is a user-defined parameter. In [5], a faster mining
method for this problem was also proposed, which uses a
tree structure to count the support of multiple patterns at
two database scans. [7] studies the problem of finding sets of
events that appear together periodically. In each qualifying
period, the set of events may not appear in exactly the same
positions, but their occurrence may be shifted or disrupted,
due to the presence of noise. However, this work does not
consider the order of events in such patterns. On the other
hand, it addresses the problem of mining patterns and their
periods automatically. Finally, [15] studies the problem of
finding patterns, which appear in at least a minimum num-
ber of consecutive periodic intervals and groups of such in-
tervals are allowed to be separated by at most a time interval
threshold.

A number of spatial access methods, which are variants of
the R–tree [3] have developed for the management of moving

object trajectories. [10] proposes 3D variants of this access
method, suitable for indexing historical spatiotemporal data.
Time is modeled as a third dimension and each moving ob-
ject trajectory is mapped to a polyline in this 3D space. The
polyline is then decomposed into a sequence of 3D line seg-
ments, tagged with the object-id they correspond to. The
segments, in turn, are indexed by variants of the 3D R–tree,
which differ in the criteria they use to split their nodes. Al-
though this generic method is always applicable, it stores
redundant information if the positions of the objects do not
constantly change. Other works [13, 4] propose multi-version
variants of the R–tree, which share similar concepts to ac-
cess methods for time-evolving data [11]. Recently [12], there
is an increasing interest in (approximate) aggregate queries
on spatiotemporal data, e.g., “find the distinct number of
objects that were in region r during a specific time interval”.

3. PERIODIC PATTERNS IN OBJECT TRA-
JECTORIES

In our model, we assume that the locations of objects are
sampled over a long history. In other words, the movement
of an object is tracked as an n-length sequence S of spa-
tial locations, one for each timestamp in the history, of the
form {(l0, t0), (l1, t1), . . . , (ln−1, tn−1)}, where li is the ob-
ject’s location at time ti. If the difference between consecu-
tive timestamps is fixed (locations are sampled every regular
time interval), we can represent the movement by a simple
sequence of locations li (i.e., by dropping the timestamps ti,
since they can be implied). Each location li is expressed in
terms of spatial coordinates. Figure 1a, for example, illus-
trates the movement of an object in three consecutive days
(assuming that it is tracked only during specific hours, e.g.,
working hours). We can model it with sequence S = {〈4, 9〉,
〈3.5, 8〉,. . . , 〈6.5, 3.9〉, 〈4.1, 9〉,. . . }. Given such a sequence, a
minimum support min sup, and an integer T , called period,
our problem is to discover movement patterns that repeat
themselves every T timestamps. A discovered pattern P is
a T -length sequence of the form r0r1 . . . rT−1, where ri is a
spatial region or the special character *, indicating the whole
spatial universe. For instance, pattern AB*C** implies that
at the beginning of the cycle the object is in region A, at
the next timestamp it is found in region B, then it moves ir-
regularly (it can be anywhere), then it goes to region C, and
after that it can go anywhere, until the beginning of the next
cycle, when it can be found again in region A. The patterns
are required to be followed by the object in at least min sup
periodic intervals in S.

Existing algorithms for mining periodic patterns (e.g., [5])
operate on event sequences and discover patterns of the above
form. However, in this case, the elements ri of a pattern are
events (or sets of events). As a result, we cannot directly
apply these techniques for our problem, unless we treat the
exact locations li as discrete categorical values. Nevertheless
it is highly unlikely that an object will repeat an identical se-
quence of 〈x, y〉 locations precisely. Even if the spatial route
is precise, the location transmissions at each timestamp are
unlikely to be perfectly synchronized. Thus, the object will
not reach the same location at the same time every day, and
as a result the sampled locations at specific timestamps (e.g.,
at 9:00 a.m. sharp, every day), will be different. In Figure
1a, for example, the first daily locations of the object are very
close to each other, however, they will be treated differently
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Figure 1: Periodic patterns in with respect to pre-defined spatial regions

by a straightforward mining algorithm.
One way to handle the noise in object movement is to re-

place the exact locations of the objects by the regions (e.g.,
districts, mobile communication cells, or cells of a synthetic
grid) which contain them. Figure 1b shows an example of
an area’s division into such regions. Sequence {A, A, C, C,
C, G, A,...} can now summarize the object’s movement and
periodic sequence pattern mining algorithms, like [5], can di-
rectly be applied. Figure 1c shows three (closed) discovered
patterns for T=6, and min sup = 2. A disadvantage of this
approach is that the discovered patterns may not be very
descriptive, if the space division is not very detailed. For ex-
ample, regions A and C are too large to capture in detail the
first three positions of the object in each periodic instance.
On the other hand, with detailed space divisions, the same
(approximate) object location may span more than one dif-
ferent regions. For example, in Figure 1b, observe that the
third object positions for the three days are close to each
other, however, they fall into different regions (A and C) at
different days. Therefore, we are interested in the automated
discovering of patterns and their descriptive regions. Before
we present methods for this problem, we will first define it
formally.

3.1 Problem definition
Let S be a sequence of n spatial locations {l0, l1, . . . , ln−1},

representing the movement of an object over a long history.
Let T ¿ n be an integer called period (e.g., day, week,
month). A periodic segment s is defined by a subsequence
lili+1 . . . li+T−1 of S, such that i modulo T = 0. Thus, seg-
ments start at positions 0, T, . . . , (b n

T
c− 1) ·T , and there are

exactly m = b n
T
c periodic segments in S.∗ Let sj denote the

segment starting at position lj·T of S, for 0 ≤ j < m, and let
sj

i = lj·T+i, for 0 ≤ i < T .
A periodic pattern P is defined by a sequence r0r1 . . . rT−1

of length T , such that ri is either a spatial region or *. The
length of a periodic pattern P is the number of non-* regions
in P . A segment sj is said to comply with P , if for each
ri ∈ P , ri = * or sj

i is inside region ri. The support |P |
of a pattern P in S is defined by the number of periodic
segments in S that comply with P . We sometimes use the
same symbol P to refer to a pattern and the set of segments
that comply with it. Let min sup ≤ m be a positive integer

∗If n is not a multiple of T , then the last n modulo T loca-
tions are truncated and the length n of sequence S is reduced
accordingly.

(minimum support). A pattern P is frequent, if its support
is larger than min sup.

A problem with the definition above is that it imposes
no control over the density of the pattern regions ri. In
other words, if the pattern regions are too relaxed (e.g., each
ri is the whole map), the pattern may always be frequent.
Therefore, we impose an additional constraint as follows. Let
SP be the set of segments that comply with a pattern P .
Then each region ri of P is valid if the set of locations RP

i :=
{sj

i | sj ∈ SP } form a dense cluster. To define a dense cluster,
we borrow the definitions from [2] and use two parameters ε
and MinPts. A point p in the spatial dataset RP

i is a core
point if the circular range centered at p with radius ε contains
at least MinPts points. If a point q is within distance ε from
a core point p, it is assigned in the same cluster as p. If q is a
core point itself, then all points within distance ε from q are
assigned in the same cluster as p and q. If RP

i forms a single,
dense cluster with respect to some values of parameters ε and
MinPts, we say that region ri is valid. If all non-* regions of
P are valid, then P is a valid pattern. We are interested in
the discovery of valid patterns only. In the following, we use
the terms valid region and dense cluster interchangeably; i.e.,
we will often use the term dense region to refer to a spatial
dense cluster and the points in it.

Figure 2a shows an example of a valid pattern, if ε = 1.5
and MinPts = 4. Each region at positions 1, 2, and 3 forms
a single, dense cluster and is therefore a dense region. Notice,
however, that it is possible that two valid patterns P and P ′

of the same length (i) have the same * positions, (ii) every
segment that complies with P ′, complies with P , and (iii)
|P ′| < |P |. In other words, P implies P ′. For example, the
pattern of Figure 2a implies the one of Figure 2b (denoted
by the three circles). A frequent pattern P ′ is redundant if
it is implied by some other frequent pattern P . The mining
periodic patterns problem searches for all valid periodic
patterns P in S, which are frequent and non-redundant with
respect to a minimum support min sup. For simplicity, we
will use ‘frequent pattern’ to refer to a valid, non-redundant
frequent pattern.

3.2 Mining periodic patterns
In this section, we present techniques for mining frequent

periodic patterns and their associated regions in a long his-
tory of object trajectories. We first address the problem
of finding frequent 1-patterns (i.e., of length 1). Then, we
propose two methods to find longer patterns; a bottom-up,
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level-wise technique and a faster top-down approach.

3.2.1 Obtaining frequent 1-patterns
Including automatic discovery of regions in the mining task

does not allow for the direct application of techniques that
find patterns in sequences (e.g., [5]), as discussed. In order to
tackle this problem, we propose the following methodology.
We divide the sequence S of locations into T spatial datasets,
one for each offset of the period T . In other words, locations
{li, li+T , . . . , li+(m−1)·T } go to set Ri, for each 0 ≤ i < T .
Each location is tagged by the id j ∈ [0, . . . , m−1] of the seg-
ment that contains it. Figure 3a shows the spatial datasets
obtained after decomposing the object trajectory of Figure
1a. We use a different symbol to denote locations that cor-
respond to different periodic offsets and different colors for
different segment-ids.by temporal position 
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Observe that a dense cluster r in dataset Ri corresponds
to a frequent pattern, having * at all positions and r at po-
sition i. Figure 3b shows examples of five clusters discovered
in datasets R1, R2, R3, R4, and R6. These correspond to five
1-patterns (i.e., r11*****, *r21****, etc.). In order to iden-
tify the dense clusters for each Ri, we can apply a density-
based clustering algorithm like DBSCAN [2]. Clusters with
less than min sup points are discarded, since they are not
frequent 1-patterns according to our definition.

Clustering is quite expensive and it is a frequently used
module of the mining algorithms, as we will see later. DB-
SCAN [2] has quadratic cost to the number of clustered
points, unless an index (e.g., R–tree) is available. Since R–
trees are not available for every set of arbitrary points to be
clustered, we use a hash-based method, that divides the 2D

space using a regular grid with cell area ε
√

2×ε
√

2. This grid
is used to hash the points into buckets according to the cell
that contains them. The rationale of choosing this cell size is
that if one cell contains at least MinPts points, we know for
sure that it is dense and need not perform any range queries
for the objects in it. The remainder of the algorithm merges
dense cells that contain points within distance ε (using inex-
pensive minimum bounding rectangle tests or spatial join, if
required) and applies ε-range queries from objects located in
sparse cells to assign them to clusters and potentially merge
clusters. Our clustering technique is fast because not only
does it avoid R–tree construction, but it also minimizes ex-
pensive distance computations. The details of this algorithm
are omitted for the sake of readability.

3.2.2 A level-wise, bottom-up approach
Starting from the discovered 1-patterns (i.e., clusters for

each Ri), we can apply a variant of the level-wise Apriori-
TID algorithm [1] to discover longer ones, as shown in Figure
4. The input of our algorithm is a collection L1 of frequent 1-
patterns, discovered as described in the previous paragraph;
for each Ri, 0 ≤ i < T , and each dense region r ∈ Ri, there
is a 1-pattern in L1. Pairs 〈P1, P2〉 of (k − 1)-patterns in
Lk−1, with their first k−2 non-* regions in the same position
and different (k − 1)-th non-* position create candidate k-
patterns (lines 4–6). For each candidate pattern Pcand, we
then perform a segment-id join between P1 and P2 and if
the number of segments that comply with both patterns is
at least min sup, we run a pattern validation function to
check whether the regions of Pcand are still clusters. After
the patterns of length k have been discovered, we find the
patterns at the next level, until there are no more patterns
at the current level, or there are no more levels.
Algorithm STPMine1(L1, T , min sup);
1). k:=2;
2). while (Lk−1 6= ∅ ∧ k < T )
3). Lk:=∅;
4). for each pair of patterns (P1, P2) ∈ Lk−1
5). such that P1 and P2 agree on the first k − 2
6). and have different (k − 1)-th non-* position
7). Pcand:=candidate gen(P1, P2);
8). if (Pcand 6= null) then
9). Pcand:=P1 1P1.sid=P2.sid P2; //segment-id join
10). if |Pcand| ≥ min sup then
11). validate pattern(Pcand, Lk, min sup);
12). k:=k + 1;
13). return P:=

SLk, ∀1 ≤ k < T ;

Figure 4: Level-wise pattern mining
In order to facilitate fast and effective candidate genera-

tion, we use the MBRs (i.e., minimum bounding rectangles)
of the pattern regions. For each common non-* position i the
intersection of the MBRs of the regions for P1 and P2 must be
non-empty, otherwise a valid superpattern cannot exist. The
intersection is adopted as an approximation for the new pat-
tern Pcand at each such position i. During candidate pruning,
we check for every (k − 1)-subpattern of Pcand if there is at
least one pattern in Lk−1, which agrees in the non-* posi-
tions with the subpattern and the MBR-intersection with it
is non-empty at all those positions. In such a case, we ac-
cept Pcand as a candidate pattern. Otherwise, we know that
Pcand cannot be a valid pattern, since some of its subpatterns
(with common space covered by the non-* regions) are not
included in Lk−1.

Function validate pattern takes as input a k-length can-
didate pattern Pcand and computes a number of actual k-



length patterns from it. The rationale is that the points at
all non-* positions of Pcand may not form a cluster anymore
after the join of P1 and P2. Thus, for each non-* position
of Pcand we re-cluster the points. If for some position the
points can be grouped to more than one clusters, we create a
new candidate pattern for each cluster and validate it. Note
that, from a candidate pattern Pcand, it is possible to gener-
ate more than one actual patterns eventually. If no position
of Pcand is split to multiple clusters, we may need to re-
cluster the non-* positions of Pcand, since some points (and
segment-ids) may be eliminated during clustering at some
position.

To illustrate the algorithm, consider the 2-length patterns
P1 = r1xr2y* and P2 = r1w*r3z of Figure 5a. Assume that
MinPts = 4 and ε = 1.5. The two patterns have com-
mon first non-* position and MBR(r1x) overlaps MBR(r1w).
Therefore, a candidate 3-length pattern Pcand is generated.
During candidate pruning, we verify that there is a 2-length
pattern with non-* positions 2 and 3 which is in L2. Indeed,
such a pattern can be spotted at the figure (see the dashed
lines). After joining the segment-ids in P1 and P2 at line 9
of STPMine1, Pcand contains the trajectories shown in Fig-
ure 5b. Notice that the locations of the segment-ids in the in-
tersection may not form clusters any more at some positions
of Pcand. This is why we have to call validate pattern, in
order to identify the valid patterns included in Pcand. Ob-
serve that, the segment-id corresponding to the lowermost
location of the first position is eliminated from the cluster as
an outlier. Then, while clustering at position 2, we identify
two dense clusters, which define the final patterns r1ar2br3c

and r1dr2er3f .
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3.2.3 A two-phase, top-down algorithm
Although the algorithm of Figure 4 can find all partial pe-

riodic patterns correctly, it can be very slow due to the huge
number of region combinations to be joined. If the actual
patterns are long, all their subpatterns have to be computed
and validated. In addition, a potentially huge number of can-
didates need to be checked and evaluated. In this section, we
propose a top-down method that can discover long patterns
more efficiently.

After applying clustering on each Ri (as described in Sec-
tion 3.2.1), we have discovered the frequent 1-patterns with
their segment-ids. The first phase of STPMine2 algorithm
replaces each location in S with the cluster-id it belongs to
or with an ‘empty’ value (e.g., *) if the location belongs
to no cluster. For example, assume that we have discov-
ered clusters {r11, r12} at position 1, {r21} at position 2,
and {r31, r32} at position 3. A segment {l1, l2, l3}, such that

l1 ∈ r12, l2 /∈ r21, and l3 ∈ r31 is transformed to subsequence
{r12*r31}. Therefore, the original spatiotemporal sequence
S is transformed to a symbol-sequence S ′.

Now, we could use the mining algorithm of [5] to discover
fast all frequent patterns of the form r0r1 . . . rT−1, where
each ri is a cluster in Ri or *. However, we do not know
whether the results of the sequence-based algorithm are ac-
tual patterns, since the contents of each non-* position may
not form a cluster. For example, {r12*r31} may be frequent,
however if we consider only the segment-ids that qualify this
pattern, r12 may no longer be a cluster or may form differ-
ent actual clusters (as illustrated in Figure 5). We call the
patterns P ′ which can be discovered by the algorithm of [5]
pseudopatterns, since they may not be valid.

To discover the actual patterns, we apply some changes
in the original algorithm of [5]. While creating the max-
subpattern tree, we store with each tree node the segment-ids
that correspond to the pseudopattern of the node after the
transformation. In this way, one segment-id goes to exactly
one node of the tree. However, S could be too large to man-
age in memory. In order to alleviate this problem, while
scanning S, for every segment s we encounter we perform
the following operations.

• First, we insert the segment to the max-subpattern
tree, as in [5], increasing the counter of the candidate
pseudopattern P ′ that s corresponds to after the trans-
formation. An example of such a tree is shown in Figure
6. This node can be found by finding the (first) max-
imal pseudopattern that is a superpattern of P ′ and
following its children, recursively. If the node corre-
sponding to P ′ does not exist, it is created (together
with any non-existent ancestors). Notice that the dot-
ted lines are not implemented and not followed during
insertion (thus, we materialize the tree instead of a lat-
tice). For instance, for segment with P ′ = {*r21r31},
we increase the counter of the corresponding node at
the second level of the tree.

• Second, we insert an entry 〈P ′.id, s.sid〉 to a file F ,
where P ′.id is the id of the node of the lattice that
corresponds to pseudopattern P ′ and s.sid is the id of
segment s. At the end, file F is sorted on P ′.id to bring
together segment-ids that comply to the same (maxi-
mal) pseudopattern. For each pseudopattern with at
least one segment, we insert a pointer to the file posi-
tion, where the first segment-id is located. Nodes of the
tree are labeled in breadth-first search order for reasons
we will explain shortly.
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Figure 6: Example of max-subpattern tree

Now, instead of finding frequent patterns in a bottom-up
fashion, we traverse the tree in a top-down, breadth-first or-



der. For every pseudopattern with at least min sup segment-
ids, we apply the validate pattern function of Figure 4 to
recover potential valid patterns. All segment-ids that belong
to a discovered pattern are removed from the current pseu-
dopattern. The rationale is that we are interested in patterns
that are not spatially contained in some superpattern, so we
use only those segment-ids that are not included in a pattern
to verify subpatterns of it.

Thus, after scanning the first level of the lattice, we may
have discovered some patterns and we may have shrunk segment-
id lists of the pseudopatterns. Then, we move to the next
level of the lattice. The support of a pseudopattern P ′ at
each level is the recorded support of P ′ plus the supports of
all its superpatterns (recall that a segment-id is assigned to
the maximal pattern it complies with). The supports of the
superpatterns can be immediately accessed from the lattice.
If the total support of the candidate is at least min sup,
then the segment-ids have to be loaded for application of
validate pattern. The segment-ids of a superpattern may
already be in memory from previous level executions. If not,
they are loaded from the file F . After validation, only the
disqualified segment-ids are kept to be used at lower level pat-
terns. Traversal continues until there are no more patterns
or it is not possible to find more patterns at lower levels of
the lattice.

The fact that segment-ids are clustered in F according to
the breadth-first traversal of the lattice, minimizes random
accesses and restricts the number of loaded blocks to memory.
The segment-ids for a superpattern remain in memory to be
used at lower level validations. If we run out of memory,
the segment-ids of the uppermost lattice levels are rewritten
to disk, but this time possibly to a smaller file if there were
some deletions.

A pseudo code for STPMine2 is shown in Figure 7. Ini-
tially, the tree and the segment-ids file are created and linked.
Then for each level, we find the support of a pseudopattern
|P ′| at level k by accessing only the supports of its super-
patterns P ′′ ⊃ P at level k + 1, since we are accessing the
tree in breadth first order. If |P ′| ≥ min sup, we validate
the pattern as in STPMine1 and if some pattern is discov-
ered, we remove from P ′ all those segment-ids that comply
with the discovered pattern. Thus, the number of segment-
ids decrease as we go down the levels of the tree, until it
is not possible to discover any more patterns, or there are
no more levels. Notice that the patterns discovered here are
only maximal, as opposed to STPMine1, which discovers all
frequent patterns. However, we argue that maximal patterns
are more useful, compared to the huge set of all patterns. In
addition, as we show in the experimental section, STPMine2
is much faster than STPMine1 for data, which contain long
patterns.

3.3 Mining shifted/distorted patterns
We have discussed how to deal with non-rigid pattern in-

stances in space, using clustering. However, pattern instances
may be also shifted/distorted in time. For example, even
though Bob follows more or less the same route from his
house to his work, some days he may delay, because he wakes
up later than usual, or due to traffic. Shifted/distorted pat-
tern instances can be counted by our algorithms, as follows.
For a single object location at offset position i, instead of gen-
erating a single point in the corresponding Ri, as before, we
generate a point at all neighbor offset positions R(i−τ) mod T ,

Algorithm STPMine2(L1, T , min sup);
1). build max-subpattern tree T and pattern-file F ;
2). sort F on P ′.id and connect it to the nodes of T ;
3). for k = T downto 2
4). for each pattern P ′ at level k of T
5). |P ′|:=P ′.counter +

P
P ′′⊃P ′,length(P ′′)=k+1 |P ′′|;

6). if |P ′| ≥ min sup then
7). Pcand:=

S
P ′′⊇P ′ P ′′.sids;

8). validate pattern(Pcand,L, min sup);
9). if P has changed then
10). remove from P ′ those sids in new patterns of P;
11). if unassigned sids less than min sup then
12). return P;
13). return P;

Figure 7: Top-down pattern mining

R(i−τ+1) mod T , . . . , R(i+τ) mod T , where τ is a maximum
shifting/distortion threshold. Consider, for instance, the 5th
position of day 1, in Figure 3a and assume that τ = 1. In-
stead of generating a single ‘¥’ point at that location, we
generate one ‘¥’ point (to file R5), one ‘+’ point (to file R4),
and one ‘×’ point (to file R6). All these points have the
same coordinates, but they are considered part of multiple
periodic positions. In other words, there is a data repli-
cation with a factor 2 · τ + 1, however, this ensures that
shifted patterns will be counted in the supports of the ac-
tual positions. In practice, most of the replicated points will
be discarded as noise, after the discovery of the 1-patterns,
thus the overhead will not increase significantly. Obviously,
segment-ids that appear multiple times in the same pattern
(due to point replication), are counted only once. As a vari-
ant of this idea we can weigh the replicated points with a
number anti-proportional to their distance from their actual
temporal positions, in order to penalize distortion and in-
crease accuracy.

4. INDEXING USING PERIODIC PATTERNS
The aim of a good spatio-temporal index structure is to

manage the trajectories of a set of m moving objects S =
{p1, p2, . . . , pm}, in order to efficiently process spatiotempo-
ral range queries, like “find all objects which were in Central
district between 2:00 p.m. and 3:00 p.m. yesterday”. In
this section, we present an indexing method that exploits
the discovered periodic patterns. First, we present the pro-
posed index structures and then we discuss query processing
algorithms that use them.

4.1 Indexing scheme
For each object p ∈ S, we first apply the mining tech-

niques to extract their periodic patterns and then organize all
of them (for all objects) into a special index structure called
Period Index (PI). Only objects that follow periodic patterns
are stored in the PI and each pattern is stored only once. In
particular, the PI consists of the following two structures; (i)
a structure called Pattern Index that stores, for each object
p ∈ S a concise representation of its periodic pattern(s) P
and (ii) an index called Location Index that stores for each
object p with some pattern(s) in PI, the actual locations of
p. Furthermore, we use a traditional spatiotemporal index
(e.g., a 3D R–tree [10]) to store the locations of objects that
do not follow any periodic movement (outliers). We call this
structure the Exception Index (EI). We expect that EI is
small (compared to the database size); otherwise the dataset
is not periodic, in which case our technique degrades to a



traditional spatiotemporal indexing method. Next, we dis-
cuss possible implementations of the Pattern and Location
Indexes.

Pattern Index: Consider a periodic pattern P = r0r1 . . . rT−1

for an object p. Let us assume for now that there is no
* position in P and the patterns for all periodic objects have
the same length T (we discuss the more general case later).
For each valid region ri ∈ P , we compute the two dimensional
region MBR Mi that encloses this region (e.g., see Figure 5).
The area of each Mi is expected to be small, depending on
the density parameters ε and MinPts that are used in the
clustering phase. An important property of each Mi is that
it encloses all locations with offset i that belong to segments
which comply with P . That is, for each location lj of p at
timestamp j, we have lj ∈ Mi, where i = j mod T . Of
course that is true only if lj belongs to a periodic segment.
The Pattern Index is a two dimensional index (in our case a
2D R–tree [3]) that contains all the region MBRs Mi for all
periodic objects. In addition, with each Mi of an object p,
we store the offset i and the object-id p.oid.

Location Index: In this index, we store the locations of all
the periodic objects in the database. One approach is to im-
plement it using a hash table indexed on the object ids. Each
entry h(p.oid) in the hash table contains the period T of the
object p and a pointer to the first disk page that contains
the locations of p. The locations are organized as an array
ordered by the location timestamps and stored in sequen-
tial disk pages, e.g., in the following order: l0, l1, l2, . . . , ln−1.
Therefore, to find the location lt of p at a specific times-
tamp t, we just need to calculate the disk page that contains
this entry, which can be done in constant time. The size of
the hash table is proportional to the number of objects and
for typical applications this table can be easily kept in main
memory.

In general, the patterns discovered by the data mining al-
gorithms may contain * positions. All these locations are
considered outliers and they are inserted into EI. Therefore,
no MBRs for these elements are inserted into PI. In addi-
tion, the locations of the segments of periodic objects that
do not comply with the periodic pattern are inserted into
EI. Note that if the Location Index is implemented using the
hash-based approach, the above insertions introduce some
replication since they are stored in both indexes. However,
the redundancy is expected to be small, especially if the dis-
covered patterns have high support.

4.2 Query processing
Here we discuss how to evaluate spatiotemporal range queries

using the Period and Exception Index structures discussed
above. Given a query region in space qR and time interval
qT = [ts, te], we are interested in finding the objects that are
contained in qR at some point during qT .

The query processing algorithm first runs the (spatiotem-
poral) query on the Exception Index and retrieves the objects
that satisfy the query. Let A be the set of these objects. The
next step, is to run the query on the Pattern index using only
the spatial extent qR. For each region MBR that intersects
the query, we keep the object id and the offset of this MBR.
Let B be the set of objects that correspond to these MBRs.
We compute the set C = B − A (set difference). This set
contains all the objects that must be checked using the Lo-
cation Index in order to validate if a particular object satisfies

the query. Indeed, if an object appears in A, it means that
it has already been discovered using the Exception Index,
and therefore it does not need to be checked again. Using
the hash table, for each object p ∈ C, we compute the disk
page that contains the location of p at ts. Next, we examine
the consecutive locations of this object sequentially, starting
from ts until a qualifying location is found or the end of the
query time interval te is reached. Finally, the answer is the
union of A and the objects from C that pass the verification
step.

4.3 Other compression/indexing schemes
In some applications the vast amount of historical spa-

tiotemporal data can render their storage in secondary mem-
ory devices impractical. Typically, very old data are deleted,
or in the best case simply archived in sequential tertiary stor-
age devices (e.g., tapes), making efficient search impossible.
Instead of storing the actual object movements, we can com-
press this information by keeping only the patterns, their oc-
currences, and the exception movements. More specifically,
for each object we keep (i) the periodic patterns, (ii) the
segment-ids that comply with each pattern, and (iii) the ex-
ception movements. This information can be managed using
the structures described in the previous section, but now the
exact locations corresponding to periodic positions (i.e., the
Location Index) are discarded. This can greatly reduce the
storage requirements. Essentially, query evaluation becomes
inexact since a set of locations corresponding to a non-* off-
set position are approximated by their MBR, but the error
is small due to the descriptiveness of the patterns.

Another, more aggressive approach is to discard the ex-
ceptions, as well. The lightweight Pattern Index described
in Section 4.1 can be used by itself to provide approximate
answers to queries referring to the past movements of ob-
jects. If for each periodic pattern of an object we also store
its validity lifetime, the Period Index could filter objects not
only based on their spatial relationship with the query, but
using the temporal dimension as well.

5. EXPERIMENTAL EVALUATION
We implemented and evaluated the mining and indexing

techniques presented in the paper. The language used was
C++ and the experiments were performed on a Pentium III
700MHz workstation with 1GB of memory, running Unix.

In order to test the effectiveness and efficiency of the tech-
niques under various conditions, we designed a generator for
long object trajectories which exhibit periodicity according
to a set of parameter values. These parameters are the length
n of the time history (in timestamps), the period T , the
length ` of the maximal frequent patterns followed by the
object (` ≤ T ), and a probability f for a periodic segment
in the object’s movement to comply with no hidden patterns
(i.e., the movement during this segment is irregular).

Before generating the movement, the approximate regions
for the maximal periodic patterns are determined. Let P be
a generated pattern. A random circular route is generated in
space and for each non-* position i in P , a spatial location
lPi (i.e., point) on that route is determined, such that the
distance between two non-* positions on the route is propor-
tional to their temporal distance in the pattern. Afterwards,
the movement of the object is generated. For every periodic
segment s, we initially determine whether s should be a noise
(i.e., irregular) segment or not, given the probability f .



If s is a regular segment, a random maximal pattern P is
selected and the object’s movement is generated as follows.
If the next segment location to be generated corresponds to
a non-* position i of P , the location li is generated randomly
and within a distance E from the spatial location lPi of the
non-* position. E ranges from 0 to 2% of the map size. Oth-
erwise (i.e., l corresponds to an * position), li is generated
randomly, but such that the movement is “targeted” to the
next periodic location. In other words, (i) li “moves” with
respect to the previous segment location li−1 towards the
next non-* position j and (ii) its distance from the previous
location li−1 is the spatial distance between li−1 and lPj di-
vided by j − i + 1, i.e., the temporal distance between these
two positions. In order to prevent regular movements, both
the distance and direction angle are distorted. In specific, we
add to the angle (in radians) a random number in [−1, 1] and
the distance is multiplied by a number between [1.5, 0.8].†

If s is a noise segment, the object can move everywhere in
space. The movement is determined by a random direction
angle (with respect to the previous location) and a random
distance in [0, maxwalk], where maxwalk is used to control
the maximum “walking” distance of the object between two
timestamps. In order to avoid extreme jumps, after half of
the movements in a noise segment, the rest are generated
to “target” to the next periodic position, using the method
described above.

5.1 Mining Effectiveness
The first experiment demonstrates the effectiveness of the

mining techniques proposed in Section 3.2. We generated
a small problem, with n = 1000 (i.e., there are only 1000
locations in the object’s trajectory). T is set to 20 and the
object follows a single periodic pattern P at 39 out of 50
segments, whereas the movement is irregular in 11 segments.
Figure 8a shows the objects trajectory, where the periodic
movement can roughly be observed. For this dataset ` = 10,
i.e., there are 10 non-* positions in P . Figure 8b shows the
locations of the object if we consider only the last position
in each of the 50 periodic segments. This corresponds to file
R19. A cluster, corresponding to a frequent 1-pattern, can
easily be spotted on the figure.

Figure 8c shows the maximal frequent pattern P of length
10, successfully discovered by STPMine1 and STPMine2,
when min sup = 30. The non-*positions are 6, 7, 9, 10,
11, 12, 13, 15, 18, and 19. We plot the object’s movement,
interpolated using only the non-* positions. The discovered
pattern is identical to the generated one. The dense regions
are successfully detected by the clustering module, and the
spatial extents of the pattern are minimal.

We also developed and tested a technique that applies di-
rectly the data mining algorithm for event sequence data [5].
The space is divided using a regular M×M grid. Then, each
location of S is transformed to the cell-id which encloses the
location. For instance, if we assume that all locations are in
a unit [0, 1]× [0, 1] space, a location l = 〈x, y〉 is transformed
to a cell with id by · Mc · M + bx · Mc. Then, we use the
algorithm of [5] to find partial patterns that are described by
cell-ids. We call this the grid-based mining method.

Figure 8d shows a maximal pattern P ′ discovered by this
grid-based technique, when using a 10× 10 grid. P ′ has the

†These values were tuned to match realistic object move-
ments and at the same time to disallow falsely generated
periodic patterns.
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Figure 8: Example of a dataset and discovered pat-
terns (n = 50, min sup = 30)

largest length among all discovered patterns, however it is
only 4 (whereas the actual pattern P has 10 non-* positions).
The non-* positions of P ′ are 6, 10, 13, and 18, captured by
cells c64, c43, c34, and c47, respectively. Most frequent posi-
tions are lost because the locations in the respective clusters
are split into more than one cells. For instance, the cluster of
Figure 8b is split between cells c47 and c57. Neither of these
cells has higher support than min sup for position 19, thus
the frequent 1-pattern is missed. Other grid size/position
settings also produce similar results; the pattern regions are
either split and missed or found and overestimated by larger
cells. From this small example, we can see the importance
of discovering the periodic patterns and their descriptive re-
gions effectively.

5.2 Mining Efficiency
In the next set of experiments, we validate the efficiency of

the proposed techniques under various data settings. First,
we compare the cost of the (ineffective) grid-based method,
STPMine1, and STPMine2 as a function of the length of
the maximal hidden pattern. We generated a sequence S
of n=1M object locations, and set T = 100 and min sup =
0.7·n. For this and subsequent experiments we used ε = 0.005
and MinPts = 200 in the clustering module.

Figure 9a plots the results. Naturally, the grid-based ap-
proach is the fastest method, since it performs no clustering
and no refinement of the discovered regions. However, as ex-
emplified in the previous section, it misses the long patterns
in all tested cases. Moreover, its efficiency is due to the fact
that a large fraction of actual 1-patterns are missed and the
search space is pruned. STPMine1 is very slow, when the
hidden patterns are long. Like most bottom-up mining tech-
niques, it suffers from the huge number of candidates that
need to be generated and validated, and therefore it is inap-
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Figure 9: Mining efficiency under various conditions

plicable for the tested cases where the hidden patterns have
more than 10 non-* positions. STPMine2 is very efficient
because it uses the first phase to identify fast large patterns
that are potentially useful. Even when re-clustering fails for
the maximal candidate patterns, the actual patterns are dis-
covered usually only after few hops down the max-subpattern
tree. Observe that, even though STPMine2 performs cluster-
ing a large number of times, it is not significantly slower than
the ineffective grid-based approach. Interestingly, it outper-
forms the grid-based method when there is a single hidden
pattern with length equal to T . In this case, the grid method
spans many actual clusters between grid cells and splits the
actual pattern to multiple maximal frequent patterns, the
support of which is expensive to count in the large lattice.

In the next experiment, we test the effects of period length
on the same database size, but with different values of T . The
length of the maximal hidden pattern is 0.5 · T in all cases.
Again, n=1M and min sup = 0.7·n. Figure 9b compares the
costs of the grid-based approach and STPMine2; we do not
include the cost of STPMine1, since this method is very slow
for long patterns. The figure shows that the costs of the two
methods are almost invariant to T for a constant database
size n. If T is small, then there are few, but large files to
be clustered by STPMine1. On the other hand, for large
T , there are many but small Ri to be clustered. In the final
experiment, we test the scalability of STPMine2 to the length
n of the spatiotemporal sequence S. Figure 9c shows the
costs of STPMine2 and the grid-based approach as a function
of n, when T = 100 and the maximal pattern length is 50.
Observe that STPMine2 is scalable, since the database size
is only linearly related to the cost of finding and validating
the maximal patterns. In summary, STPMine2 is an effective
and efficient technique for mining periodic patterns and their
accurate descriptive regions in spatiotemporal data.

5.3 Indexing effectiveness
To test the effectiveness of the Period Index scheme, we

generated synthetic datasets of up to 200,000 objects. For
every object we set n = 1000, whereas (unless otherwise spec-
ified) 80% of the objects follow a single periodic pattern with
period T = 10 and length l = 9. The rest of the objects fol-
low random walks. We also generated an assortment of query
workloads. Every set consists of 100 range queries uniformly
distributed in space that cover a fixed area qR equal to 1%
of the universe. We varied the temporal predicate qT of the
queries from 5 up to 20 time instants.

We implemented the Periodic Index (PI) by using a 2D R–

tree as the Pattern Index, and a 3D R–tree as the Exception
Index. We used a main memory hash table with pointers to
the stored object data on disk for the Location Index. For
comparison, we also implemented a 3D R–tree that indexes
the trajectories without considering the periodic patterns.

To compare the two approaches we count the average I/O
cost per query for all query workloads. First, we ran a scale-
up experiment for increasing dataset sizes. In Figure 10a we
observe that PI scales well, yielding less than a 2-fold increase
in average query I/O when doubling the size of the dataset.
On the other hand, the 3D R–tree degrades slightly as the
size of the database increases. For all cases, PI has at least
2 times fewer I/Os than the 3D R–tree.

Figure 10b shows how the index adapts to datasets with in-
creasing number of object segments (60%–90%) that exhibit
periodicity. Clearly, PI incurs much fewer I/Os compared to
the 3D R–tree even for datasets that do not contain a very
large number of periodic segments. Next, we tested how the
algorithms adapt to datasets with increasing numbers of pe-
riodic objects. We generated datasets where 60% up to 90%
of the objects follow periodic patterns, while the rest do ran-
dom walks. Figure 10c plots the average query I/O. From
the trend we can see that the fewer the periodic objects, the
closer PI tends to the 3D R–tree and vice versa.

The next experiment tests the efficiency of the indexes with
increasing query lengths qT (see Figure 10d). It is apparent
that PI is not affected at all from the length of the query
time interval. On the other hand, the 3D R–tree degrades
linearly. For |qT | = 20, PI gives a 4-fold improvement over
the 3D R–tree. This is expected, since the Period Index
is a 2-dimensional R–tree that is independent of the time
dimension. In contrast, the 3D R–tree needs to access an
ever increasing number of nodes on the time dimension as
the query becomes larger.

Finally, Figure 10e plots the total size of both structures
(main memory and disk resident parts for PI) versus the
percentage of periodic segments contained in the dataset.
Furthermore, we plot the size of only the Pattern Index. As
expected PI’s size decreases as periodicity increases. The
3D R–tree, of course, is oblivious to the existence of object
periodic patterns. The Pattern Index is orders of magnitude
smaller than the total database size (16 MBs vs. 2.3GBs).
It is worth pointing out that the Pattern Index is a small
approximate (lossy) representation of the dataset and can be
used by itself to answer approximate queries with some error
guarantees based on the support of the object patterns.

To conclude, PI yields a consistent improvement over the
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Figure 10: Comparison between Period Index and 3D R–tree

straightforward 3D R–tree (4-fold in the best case). For
longer periodicities we expect PI’s performance to further
improve, since there are more chances for compressing hid-
den patterns.

6. CONCLUSIONS
In this paper we presented a framework for mining partial

periodic patterns from historical spatiotemporal data and use
them to build an effective index for object movements. Our
contributions can be summarized as follows:

• We define the important problem of periodic pattern
mining in spatiotemporal databases. We identify sev-
eral important applications of the mined patterns, in-
cluding data management, data compression, approxi-
mate query processing, and probabilistic future move-
ment prediction.

• We propose effective techniques for discovering the pe-
riodic patterns and their descriptive spatial regions from
a long history of object movements. A top-down tech-
nique (STPMine2), in specific, is very efficient, hav-
ing cost comparable to (ineffective) methods for event-
sequence data.

• We propose an indexing scheme that uses the discov-
ered patterns to effectively manage spatiotemporal data.
As shown in the experiments, it is much faster com-
pared to a conventional index that does not take peri-
odicity into account.
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