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Abstract
Efficiently and accurately discovering similarities among mov-
ing object trajectories is a difficult problem that appears in
many spatiotemporal applications. In this paper we con-
sider how to efficiently evaluate trajectory joins, i.e., how to
identify all pairs of similar trajectories between two datasets.
Our approach represents an object trajectory as a sequence
of symbols (i.e., a string). Based on special lower-bounding
distances between two strings, we propose a pruning heuris-
tic for reducing the number of trajectory pairs that need to
be examined. Furthermore, we present an indexing scheme
designed to support efficient evaluation of string similarities
in secondary storage. Through a comprehensive experimen-
tal evaluation we present the advantages of the proposed
techniques.

1. Introduction
Moving object representation, storage and processing has

received a lot of attention recently [14, 21, 25, 28, 30, 3, 8, 33,
10, 6, 27, 22, 5]. The emergence of affordable GPS devices
has enabled easy tracking of moving object trajectories. In
combination with cheap storage devices it is nowadays pos-
sible to maintain large repositories of such data. This abun-
dance of information motivates the need to develop efficient
techniques for answering interesting queries about the past
behavior of moving objects. Previous research conducted
for historical spatio-temporal data management has mainly
focused on algorithms for answering two types of queries,
namely range searches and nearest neighbors (and their re-
spective variations). For instance: “Find all airplanes that
crossed area A” or “Identify the car that passed the closest
from point A”.

In this paper we address a novel query, namely the trajec-
tory join, i.e., the problem of identifying all pairs of similar
trajectories between two datasets. Such queries can be use-
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ful in many applications, for example to identify delivery or
transportation vehicles that follow similar routes and can
thus be eliminated, e.g., “Identify the pairs of trucks that
were never apart from each other for more than 1 mile this
morning”. Here, we deal with the restricted version of the
problem where a temporal predicate is specified by the query
(e.g., “this morning”). The general trajectory join query
requires expensive evaluation algorithms more relevant to
mining applications [29, 30]. By restricting similarity eval-
uation only inside a user specified time-interval, we render
the problem more amenable to solutions that can use spe-
cialized index structures for evaluating the joins. For the
applications that we target (e.g., the delivery trucks query
mentioned before) the temporal dimension has as much sig-
nificance as the spatial dimensions of the data. Thus, we
do not consider data normalization, neither arbitrary time
shifts when evaluating similarities. Nevertheless, our tech-
niques could also support small scale time-warping by appro-
priately choosing the trajectory similarity functions used.

2. Preliminaries

2.1 Related Work
A naive approach for evaluating trajectory joins between

two given datasets would be to compare each trajectory con-
tained in the first dataset with all trajectories contained in
the second. Clearly, even if the two datasets are stored se-
quentially on disk, the amount of I/O needed by the naive
solution would be prohibitive, especially for large trajec-
tory repositories. Many join and self-join algorithms have
been designed specifically for categorical, numerical and spa-
tial data [2, 18, 20, 24, 15, 26, 11, 32, 23, 17, 19, 1, 7].
However, these algorithms are not applicable in the case of
spatio-temporal trajectories. Another straightforward solu-
tion would be to use a spatio-temporal index structure [14,
10, 25, 28] to evaluate the temporal condition of the join
queries first, and then retrieve only the candidate trajecto-
ries. A nested loop join algorithm could be used to produce
the final answers. In our scenario we assume that the se-
lectivity of the temporal predicate in general will by very
low, meaning that a very large number of trajectories will
be retrieved as possible candidates (in the worst case where
all data trajectories span the complete dataset lifetime, for
any given query time-interval all trajectories would need to
be retrieved). In this paper we use a specialized trajectory
representation and storage that can be exploited by our al-
gorithm in order to reduce the number of trajectory pairs
that need to be compared for evaluating the join queries.
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Figure 1: The centric shape formed when using radius

threshold ε.

2.2 Formal Definition
For simplicity assume that a moving object trajectory is

defined as a sequence of location/time-instant pairs. In gen-
eral, any other trajectory representation should be easily
reduced to this general form. More formally:

Definition 1. A trajectory T is a sequence of pairs
{〈l1, t1〉, . . . , 〈ln, tn〉}, where li ∈ Rd, ti ∈ N.

The trajectory join query can be defined as follows:

Definition 2. Given two sets of object trajectories R and
S, a threshold ε and time interval δt, the result of the tra-
jectory join query is a subset V of pairs 〈Ri, Sj〉 (where
Ri ∈ R, Sj ∈ S), such that during time-interval δt the dis-
tance Dδt(Ri, Sj) ≤ ε, for any pair in V and any user defined
distance function D.

In other words, for each pair of trajectories in V it holds
that one trajectory stays inside the centric shape formed by
the other trajectory when extended with radius ε in space
for every time-instant in the duration of time-interval δt (see
Figure 1). The naive approach for solving this problem will
have complexity equal to the size of the Cartesian product
R × S. For very large sets R or S, the I/O cost of this
approach will be prohibitive in practice.

The user defined distance function D (which is used here
as an inverse measure of trajectory similarity without loss
of correctness) is allowed to be arbitrary in the general def-
inition. Although, for the techniques proposed in this work
it will be mandatory to specify distance functions that are
metric (i.e., satisfy the triangular inequality) or that can at
least be lower-bounded by a distance function that is metric.
In practice, all popular distance measures (e.g., the Lp-norm
and the Dynamic Time Warping) satisfy this property.

3. Trajectory Join Evaluation
Motivated by the expensive nature of the naive algorithm

we seek solutions for evaluating trajectory joins more effi-
ciently. The fundamental idea is to find a way to prune
as many trajectory pair similarity evaluations as possible.
Straightforwardly, a specialized index structure can be de-
signed for this purpose. First, we give a brief overview of
the proposed solution and then we present our technique in
more detail.

Clearly, in order to be able to index the trajectories for the
purpose of efficient similarity evaluation we need to intro-
duce a lower-bounding distance function that can be com-
puted efficiently for arbitrary time-intervals between pairs
of trajectories, without having to access the complete tra-
jectory information. This can be achieved by storing an
approximate representation of the trajectories only for the
purpose of computing relevant lower-bounding distances ac-
cording to the given query time-intervals. Then, a large
volume of the exact trajectory representations that do not
qualify for threshold ε can be pruned, by referring only to
the reduced, approximate dataset. Subsequently, a post fil-
tering step can eliminate the false alarms produced by the
approximations. By tuning the approximation accuracy we
can adjust the number of false alarms introduced in the in-
termediate result.

The final cost of a single query will comprise of two parts:
(1) The cost of computing the lower-bounding distances
(dominated by the total size of the approximate data that
needs to be loaded from storage) and (2) the cost of exe-
cuting the filtering step (dominated by the total number of
exact data trajectories that need to be retrieved). An ideal
solution needs to be able to leverage the lower-bounding dis-
tance evaluation cost and the cost of the post filtering step.
We argue, and also confirm using a comprehensive exper-
imental evaluation, that for reasonably sized time-interval
query predicates a carefully structured approximate trajec-
tory index — one order of magnitude smaller then the total
size of the exact trajectory representations — is adequate
for improving trajectory join query performance by as much
as three orders of magnitude when compared with the naive
approach.

Hence, the problem is reduced to that of choosing appro-
priate trajectory approximations with the following proper-
ties: (1) Support for lower-bounding measures of a large
number of trajectory distance functions; (2) support for
varying approximation accuracy according to given space
constraints; and (3) amenable to efficient indexing that en-
ables fast computation of the lower-bounding distances. An
approximation technique that has the aforementioned prop-
erties is the symbolic representation of time-series proposed
by Lin et al. [16]. This approach first uses the Piecewise
Aggregate Approximation (PAA) [13, 31] and then reduces
PAA to strings of symbols from a predefined alphabet. Us-
ing this technique we can approximate the trajectories using
strings of arbitrary length, according to the desired approxi-
mation accuracy. Then, by defining an appropriate distance
function for strings and showing that this function is a lower-
bounding measure of user defined function D, we will be able
to approximately evaluate the trajectory join using only the
reduced dataset of strings. Finally, we show how the string
approximations can be organized on secondary storage such
that the computation of lower-bounding distance functions
between trajectory pairs for arbitrary time-intervals can be
computed very efficiently by taking advantage of the benefits
of sequential I/O.

3.1 Symbolic Representations for Trajectories
As already mentioned, the symbolic representations for

time-series proposed by Lin et al. [16] first utilize the Piece-
wise Aggregate Approximation (PAA) technique introduced
in [13, 31] and then transform PAA into a string. For ease
of exposition, here we present the basic concepts behind
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Figure 2: An object trajectory, its PAA representation,

and its string representation α4α3α2α1α2.

symbolic representations for 1-dimensional time-series and
show that they can be straightforwardly applied for multi-
dimensional trajectories.

PAA accepts as input a time-series of length n and pro-
duces as output an approximation of reduced size, say m.
The algorithm divides the input sequence into m equi-sized
“frames” and replaces the values contained in each frame
using the average of these values. More formally:

Definition 3. Given time-series X = {x1, . . . , xn} of
length n and a target length m ¿ n, PAA produces an ap-
proximate time-series X̄ = {x̄1, . . . , x̄m} where the values
contained inside each frame [ n

m
(i − 1), n

m
i], 1 ≤ i ≤ m are

replaced by their arithmetic mean:

x̄i =
m

n

n
m

iX

j= n
m

(i−1)+1

xj

The advantage of PAA is that the length of the reduced
time-series m can be chosen at will, thus the accuracy of
the resulting approximation can be tuned freely.

As a second step the PAA approximation can be dis-
cretized by using a symbolic representation. Lin et al. [16]
propose using a discretization of the value domain such that
the symbols produced have equal probabilities. Neverthe-
less, for our purposes and due to the nature of join queries,
equiprobable symbols need not be considered. Instead, we
chose to discretize the PAA approximations by discretizing
the original value domain using a uniform grid and assigning
a unique symbol to every partition of the grid. An exam-
ple is shown in Figure 2. Thus, the alphabet size that we
consider depends on the granularity of the chosen grid. The
finer the granularity, the larger the alphabet size that needs
to be supported, and thus the larger the representation size
of each individual symbol. The symbolic representation can
formally be defined as follows:

Definition 4. Given a uniform grid with granularity τ
assign an alphabet of symbols A = {α1, . . . , αw} such that
∀1 ≤ j ≤ w : [τ(j−1), τj) → αj (every symbol is assigned to
a unique interval of the grid). A time-series X of length n

can be approximately represented as a string X̃ = 〈x̃1 · · · x̃m〉
of length m ¿ n, by replacing every value x̄i in the m-length
PAA approximation of X with symbol x̃i = αj such that
τ(j − 1) ≤ x̄i < τj.

The exact same concept can be applied for moving object
trajectories in a multi-dimensional space. PAA frames cor-
respond to the temporal dimension of the trajectories, while

the chosen alphabet corresponds to a multi-dimensional spa-
tial partitioning of the data universe into disjoint cells. By
adjusting the size of alphabet A we can tune the representa-
tion size of the strings in the spatial dimensions (according
to space discretization); while by adjusting the size of each
frame in PAA we can tune the size of the approximations on
the temporal dimension (the length of the strings). Notice
that omitting the symbolic discretization step is equivalent
to using an alphabet size with an infinite number of symbols
(i.e., a discretization fine enough that uses a binary symbol
representation that has equal size to the binary representa-
tions of the actual trajectory data; e.g., 8 bytes for a double
value). In the rest, we will refer to this approximation as
the direct symbolic representation.

3.2 Symbolic Distance Measures
Having defined a symbolic representation for trajectories

we need to introduce a distance function that appropriately
lower-bounds the given trajectory distance function D. As-
sume in the rest for simplicity that a Euclidean distance
function is used:

Dδt(X, Y ) =

sX

i∈δt

(xi − yi)2

In the simple 1-dimensional case it can be proven that the
following distance on the symbolic representations is always
a lower-bound of the Euclidean distance:

D̃δt(X̃, Ỹ ) =

r
n

t

sX

i∈δt

d(x̃i, ỹi)2

where i ∈ δt corresponds to all frames completely covered
by time-interval δt (i.e., the total number of symbols in the
string representation contained in δt), t is the total num-
ber of such frames, and distance d between two alphabet
symbols will be discussed shortly.

The following holds:

Claim 1. D̃δt(X̃, Ỹ ) ≤ Dδt(X, Y ), for any given trajec-
tory X and Y .

A proof appears in [4, 12, 31]. For our purposes it is also
important to show that the lower-bounding distance is a
metric. The proof is straightforward, but due to lack of
space it is omitted.

The distance function d(αi, αj) for the general multi di-
mensional case can be computed simply as the minimum
distance between the two grid cells corresponding to sym-
bols αi and αj , as shown in Figure 3. This guarantees that
the distance lower-bounds the actual Euclidean distance be-
tween any two points that fall inside the respective cells. For
small dimensionality we can use a lookup table to evaluate d
fast. For larger dimensionality where the lookup table would
become unacceptably large, the minimum distance between
two symbols can be computed on the fly (all we need to
know is the assignment function of a symbol to a cell).

Lower-bounding measures for other distance functions can
also be devised similarly. For example, we can easily in-
troduce a time warping factor into the proposed distance
measure (for comparing distances between symbols at neigh-
boring time-instants) and still preserve the lower-bounding
property from a respective time-warped original distance
[29].
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3.3 Trajectory Join Algorithm
Having formalized the approximate trajectory representa-

tion and the appropriate lower-bounding distance functions
used, we can proceed with the analysis of the proposed tra-
jectory join algorithm. Assume for simplicity and without
loss of generality that all trajectories have length n and
that we approximate them using symbolic representations
of length m (for a frame size of length n/m). Assume also
that we are given two datasets R and S and we need to
evaluate a query with threshold ε and time-interval δt that
covers completely a total of t frames. In order to answer
the query we need to be able to compute very fast the dis-
tances between all pairs of trajectories inside time-interval δt
(i.e., we need to be able to compute partial string distances
for arbitrary time-intervals). First, we present an algorithm
for evaluating the trajectory join assuming that the rele-
vant distances between all pairs of strings can be computed
efficiently. Then, we will show how to index the string rep-
resentations in order to be able to efficiently execute this
operation.

3.3.1 Sliding Window Evaluation
Each relevant string segment of length δt can be viewed as

a t-dimensional point in a transformed t-dimensional space.
Using distance function D̃ on the symbolic representations
we can define an ordering of the points in t-dimensional
space by sorting them according to their distance from some
origin O. The origin can be selected arbitrarily, as long as
it is consistent for all datasets taking part in the join (later
on we will show how to chose a suitable origin). For exam-
ple, we can use as an origin the string that corresponds to
the lower left corner of the original space (e.g., α1α1 · · · ).
For all strings X̃ in sets R and S we compute distances
Dδt(O, X̃) and conceptually place them on a 1-dimensional
line as shown in Figure 4, labeled according to the dataset
they belong to.

Essentially, for each time-instant in δt we need to lo-
cate pairs of trajectories that are not further than ε, i.e.,
Di(Ri, Si) ≤ ε (the extension to time-warping measures di-
rectly follows). In other words, we need to find pairs of
strings for which the corresponding symbols are not fur-
ther apart than ε, i.e. d(X̃i, Ỹi) ≤ ε. This can be accom-
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Figure 5: Let ε = 1, thus ε̃ = 4. In this case D̃(S̃, R̃1) =

D̃(S̃, R̃2) = 3.5. Although, R̃1 is a false alarm since at

time-instant 4 the two strings lie further apart by more

than ε.

plished by using a sliding window algorithm on the sorted
1-dimensional line of string distances, and an appropriately
scaled threshold ε̃ = tε. Since D̃ is a metric, if two strings
have origin-relative symbolic distance larger than ε̃, i.e.,
|D̃δt(O, X̃) − D̃δt(O, Ỹ )| > ε̃, it is guaranteed that the ac-
tual trajectories lie farther apart than ε for at least one time-
instant inside δt (equivalently, the corresponding strings have
at least one symbol that lies farther than ε for some frame
inside δt). On the other hand, the inverse is not true. As a
result, this technique is expected to introduce a small num-
ber of false alarms. An example is shown in Figure 5.

The sliding window algorithm works in two steps. First,
we set the length of the window to 2ε̃ and place the midpoint
of the window on the first string of dataset S, let S̃i (see

Figure 4). For all strings R̃j of dataset R falling inside the

window, we report pairs 〈S̃i, R̃j〉 as possible join candidates.
Then, we slide the window and place its midpoint on the
next string in S on the 1-dimensional line. In the second
step we load the actual trajectory data for all candidate
pairs reported by the sliding window and verify the results.

The cost of the sliding window step is O(|V |+ |S| log |R|),
where |V | is an output sensitive cost equal to the total num-
ber of candidates produced, and |S| is the cardinality of the
smaller dataset. The logarithmic factor appears since we
need to perform a binary search on the sorted list of dis-
tances for R in order to locate the points that fall inside the
sliding window in every iteration. The cost of the verifica-
tion step is proportional to |V |.

A crucial observation here is the following. Notice that
the verification step cannot be avoided even if we use the
direct trajectory approximation mentioned earlier. The fact
that we project the trajectory representations from a multi-
dimensional space to a 1-dimensional line implies that even if
two representations have exactly equal distances on the line,
they might actually fall in completely opposite directions in
the original space, meaning that they would not qualify for
threshold ε. The observation holds regardless of the trajec-
tory representation used or, in other words, the approxima-
tion accuracy. This important observation implies that even
though we are approximating the trajectories by discretizing
the space, the verification cost impacts both the direct and
the approximate representations. Hence, we expect that the
approximate algorithm will have better performance due to
the reduced amount of data that need to be retrieved in order
to compute string distances.

3.3.2 The Index Structure
The sliding window algorithm will produce the candidate

pairs of trajectories that might satisfy the join criteria. In



order for the algorithm to work efficiently, first it needs to
compute the distances of all approximate trajectory repre-
sentations from an origin O. Having selected a suitable ori-
gin for the query (which will be discussed in more detail in
the following section) here we propose an index structure
that will guarantee efficient evaluation of the required dis-
tances, for arbitrary trajectory segments intersecting with a
query specified time-interval δt.

Since it is necessary to compute the distance of every sin-
gle trajectory segment in both sets R and S with the origin,
the idea is, first, to use a smaller dataset of trajectory ap-
proximations (and, hence, the need for the symbolic repre-
sentations) and, second, to guarantee that the approximate
data is stored sequentially on disk in such a way that for any
given time-interval δt, the corresponding data can be read
sequentially from disk.

This can be accomplished by consecutively storing, for
all trajectories, the symbols that correspond to the same
frame. Assuming that all symbolic representations have
equal length m and we have a total of N trajectories, essen-
tially we are storing sequentially on disk an N ×m matrix
of symbols in a column-major order. In the general case
not all trajectories will have equal lengths. For that reason
along with every trajectory symbol we also store the iden-
tifier of the trajectory that the symbol belongs to. Figure
6 shows an example, where one page size is assumed to be
able to store a maximum of three symbols along with their
respective identifiers. Only three trajectories are contained
in frame F1, thus only one page is needed. Frame F2 con-
tains six trajectories, thus two pages are needed, and so on.
The pages in every frame are stored sequentially on disk. In
addition, the first page of a frame directly follows the last
page of the previous frame.

This storage approach consumes extra space for the tra-
jectory identifiers (assuming that they require four bytes,
while one or two bytes will be adequate per symbol in most
cases). A better approach would be to omit non needed iden-
tifiers, as follows. For the symbol corresponding to the first
trajectory (e.g., trajectory 1 in frame F2) we store the tra-
jectory identifier. Subsequent identifiers that have numbers
in increasing consecutive order are omitted — the identi-
fier number can be implied (e.g., for trajectory 2 in frame
F2 the identifier can be omitted). Whenever the increasing
consecutive order is broken, we introduce the appropriate
identifier (e.g., identifier 4 for the third entry in page one of
frame F2), and continue in the same manner (thus, identi-
fiers 5, 6 and 7 can be omitted in page 2 of frame F2 since
they are all consecutive after 4). This representation will
reduce the space requirements of the index substantially for
datasets with trajectories that span a large portion of the
total dataset lifespan. On the other hand, for short lived
trajectory data this scheme will degenerate to the original
approach shown in Figure 6. For the special case where ev-
ery trajectory has equal length the identifiers can be omitted
all-together. Finally, in order to speed up the retrieval of the
first page for the frame corresponding to the beginning of
the query time-interval δt, we use a B+-tree to index the
heads of the frame page lists.

3.3.3 Heuristics for Choosing a Suitable Origin
The choice of the origin in the sliding window algorithm

affects the quality of the computed distances and thus the
total number of false alarms introduced in the intermediate
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query result. An example is shown in Figure 7 for a con-
ceptual 2-dimensional symbolic space. Figure 7a depicts a
case where the center of gravity of the dataset has been cho-
sen as the origin. The dataset in this case corresponds to
the t-dimensional points produced, given some query time-
interval δt. The figure depicts three concentric circles cen-
tered at the selected origin O. For an arbitrary circle with
radius c, we can define perimeters ch, cl such that ch− c = ε̃
and c−cl = ε̃. Now, the union of the annuli defined by these
three concentric circles represent the locus of points q (the
grayed out area in the figure) such that for any point p lying
on the middle perimeter c, the origin-relative difference of
their distances is always smaller than the query threshold,
i.e., |D̃δt(O, p)− D̃δt(O, q)| ≤ ε̃. All these points will be re-
ported as candidate pairs by the sliding window algorithm.
Notice that a large number of these points, depending on
the total size of the intersection of the aforementioned locus
with the actual data space, will be false alarms since their
true distance will be much larger than the threshold (e.g.,
points that lie in opposite sides of the locus).

Assuming for simplicity that the data points are uniformly



Table 1: Dataset Characteristics.
Total objects 50K
Universe size 1000 × 1000 Km
Simulation length 500 minutes
Initial distribution Uniform
Velocity distribution Gaussian

distributed in the symbolic space then by choosing the origin
appropriately we should be able to decrease the volume of
the intersection of each annulus and the data space. Such an
origin would guarantee that a small number of false alarms
is introduced. This can be accomplished by selecting as the
origin an outlier that lies as far away from the data space as
possible. Figure 7b shows such an example. It depicts three
concentric arcs with center the selected origin O. The locus
of points q inside the annuli sections defined by the first
and second arcs and the second and third arcs is the set of
points for which the origin relative difference of distances
from any point p lying on the middle arc is less than the
query threshold. It is clear that the curvature of the arcs
becomes more flat the further away we move the origin from
the center of gravity of the data space.

An important observation is that when the origin lies in-
side the data space, the locus of points defines a complete
annulus. On the other hand, when the origin lies far away
from the data space the locus of points becomes only a small
section of an annulus (and both have the same width). In the
first case, the worst case scenario for a circular data space
is the largest possible annulus that touches the boundary
of the space (Figure 7a). In the second case and a circular
data space, for an origin adequately far away from the cen-
ter of gravity, the worst case scenario is an annulus section
that contains the center of gravity and thus has length ap-
proximately equal to the data space diameter (Figure 7b).
By using this observation as a heuristic we motivate the
fact that we chose the string corresponding to the lower left
corner of the universe as the origin of the symbolic space.
Alternatively, we could compute the center of gravity of the
symbolic space on the fly while scanning the index for the
symbolic distance computations (here the center of grav-
ity changes according to the t-dimensional points produced,
given a query time-interval δt) and choose as the origin the
string that lies farthest from that point. Depending on the
dimensionality of the symbolic space there might be a large
number of candidate boundary strings. For example, for the
2-dimensional space shown in Figure 7 there are four pos-
sible boundary strings corresponding to the four corners of
the space.

4. Experimental Evaluation
For the experimental evaluation we used synthetic datasets

generated on the freeway system of Illinois for producing
a large number of moving object trajectories (we used the
generators provide by [9]). The properties of the datasets
appear in Table 1. We evaluate the join queries on two sep-
arate sets of the same size.

In order to test the efficiency of the proposed technique we
vary the workload characteristics. We use 100 queries per
run, varying time-interval δt from 50 to 200 time-instants
(i.e., from 10% up to 40% of the total dataset lifespan) and
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Figure 8: Symbolic, Direct and Naive for ε = 10.

similarity threshold ε from 10 up to 30 Km (i.e., from 1%
up to 3% of the total space). We compare three different
techniques, namely the Naive, the Direct, and the Symbolic
approaches. For all approaches it is assumed that the actual
trajectory data are already stored sequentially on disk in
row-major order (i.e., trajectory after trajectory).

The naive approach assumes that a total of 1 MB buffer
is available and thus it is able to load sequentially from
disk a large number of trajectories at a time, instead of
assuming that all trajectories are loaded one by one. The
Direct approach uses the proposed sliding window algorithm
and index structure, but stores the exact trajectory data in
the index. Hence, the space requirements of this index is
equal to the total size of the actual data (the data needs
to be stored twice using two different sequential orderings).
This approach is expected to have a smaller verification cost
due to a smaller number of false alarms; however, the index
cost is expected to be very large. Finally, the Symbolic
approach stores only approximations of the trajectories in
the index. For the following experiments we use a Symbolic
index structure with space requirements one tenth of the
space needed for the Direct index.

Figure 8(a) measures the total I/O processing cost for all
techniques under consideration, for increasing query time-
intervals and fixed query threshold ε = 10. To compute the
overall times we first computed separately the total number
of distinct index I/Os and the total number of verification
I/Os. We assume that a random I/O has cost equal to 2
msecs, while a sequential I/O has a cost equivalent to one
tenth of a random I/O, i.e., 0.2 msecs. Notice that the time
scale for Figure 8(a) is logarithmic. We can see that the
proposed index structure helps reduce the total I/O cost by
three orders of magnitude. Figure 8(b) shows the results
only for the Direct and Symbolic indices. The Symbolic
index is about two times faster than the Direct in all cases.

Figures 9(a) and 9(b) plot the Symbolic and Direct tech-
niques using query thresholds ε = 20 and ε = 30 respec-
tively. The naive approach is omitted since its behaviour is
constant and can be deduced from Figure 8(a). We can ob-
serve that the total cost for evaluating the queries increases
as expected due to the larger candidate set sizes that result
from relaxing the similarity criteria. Also, it is apparent that
the cost of the Symbolic approach converges to the cost of
the Direct, especially for very large time-interval queries.
Nevertheless, the Symbolic approach is still better than the
Direct for all cases, even for query time-intervals that span
40% of the total dataset lifespan and 3% of the data space.

In the last set of experiments we measure the number of
false positives reported by our technique for various values
of threshold ε. The query time-interval is set to 100 time-
instants or 20% of the lifetime of the trajectories. Figure 10
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Figure 9: Symbolic and Direct ε = 20, 30.
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Figure 10: Reported pairs versus actual pairs.

shows the results. The number of reported false positives
decreases as ε increases. Furthermore, the number of false
positives is in the worst case 200 times the size of the actual
result set, which is expected due the approximations intro-
duced and the lower-bounding function used for pruning.

In summary, the proposed technique enables efficient eval-
uation of trajectory join queries for a large number of query
predicates. Apart from being better than all other approaches
in all cases, it also has minimal storage space requirements,
when compared with the Direct approach.

5. Conclusions
We presented an algorithm and an index structure for ef-

ficiently evaluating trajectory join queries. Assuming that
a large archive of moving object trajectories has been gath-
ered, we propose a technique that uses symbolic trajectory
representations to build a very small index structure that
can help evaluate approximate answers to the join queries.
Then, by using a post filtering step and loading only a small
fraction of the actual trajectory data the correct query re-
sults can be produced. Our techniques utilize specialized
lower bounding distance functions on the symbolic repre-
sentations to guarantee no false dismissals. In addition, the
index structure enables evaluation of approximate results
with sequential disk I/O that improves the overall perfor-
mance of our algorithm. As future work we plan to extend
our techniques for the general trajectory join without tem-
poral constraints.
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