
Boston University Computer Science Tech. Report No. 2005-010, March 21, 2005.

To appear in Proceedings of ACM International Conference on Management of Data (SIGMOD), June 2005.

Query-Sensitive Embeddings

Vassilis Athitsos Marios Hadjieleftheriou George Kollios Stan Sclaroff

Computer Science Department
Boston University

111 Cummington Street
Boston, MA 02215, USA

{athitsos,marioh,gkollios,sclaroff}@cs.bu.edu

ABSTRACT
A common problem in many types of databases is retrieving
the most similar matches to a query object. Finding those
matches in a large database can be too slow to be practi-
cal, especially in domains where objects are compared us-
ing computationally expensive similarity (or distance) mea-
sures. This paper proposes a novel method for approxi-
mate nearest neighbor retrieval in such spaces. Our method
is embedding-based, meaning that it constructs a function
that maps objects into a real vector space. The mapping
preserves a large amount of the proximity structure of the
original space, and it can be used to rapidly obtain a short
list of likely matches to the query. The main novelty of our
method is that it constructs, together with the embedding, a
query-sensitive distance measure that should be used when
measuring distances in the vector space. The term “query-
sensitive” means that the distance measure changes depend-
ing on the current query object. We report experiments with
an image database of handwritten digits, and a time-series
database. In both cases, the proposed method outperforms
existing state-of-the-art embedding methods, meaning that
it provides significantly better trade-offs between efficiency
and retrieval accuracy.

1. INTRODUCTION
Many important applications require identifying, in a large

database, the most similar matches to a query object. For
example, a common way of estimating the properties of a
biological sequence (like a protein, or DNA sequence) is by
identifying its closest matches in a large database of known
sequences. As another example, nearest neighbor classifica-
tion is a widely used pattern recognition technique, in which
we classify an object by assigning to it the class of its closest
match in a database of training objects.

This work was supported by NSF grants IIS-0308213 and
IIS-0133825, and by ONR grant N00014-03-1-0108.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005 June 14-16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06 $5.00.

Although numerous indexing methods have been proposed
for speeding up nearest-neighbor retrieval [6], such methods
typically assume that we are operating in a Euclidean space,
or a metric space, or a so-called “coordinate space,” where
each object is represented as a feature vector of fixed dimen-
sions. In many actual applications these assumptions are not
obeyed, because we need to use distance measures that are
non-Euclidean and even non-metric (meaning that even gen-
eral indexing methods for metric spaces, like vp-trees and
variants [8, 18, 38, 40] cannot be applied), and because the
objects are not of fixed dimensionality. Examples of com-
putationally expensive non-Euclidean distance measures in-
clude the Kullback-Leibler distance for matching probability
distributions, Dynamic Time Warping for matching time se-
ries, or the edit distance for matching strings and biological
sequences. It is important to design efficient methods for
nearest neighbor retrieval in such spaces.
This paper proposes a novel method for approximate near-

est neighbor retrieval in such non-Euclidean spaces. Our
method is embedding-based, meaning that it constructs a
function that maps objects into a real vector space. This
mapping preserves a large amount of the proximity struc-
ture of the original space, meaning that nearby objects tend
to get mapped to nearby vectors. At the same time, measur-
ing distances between vectors (using a weighted L1 distance
measure) can be orders-of-magnitude faster than comparing
objects in the original space.
The main novelty of our method is that it constructs,

together with the embedding, a “query-sensitive” distance
measure that should be used when measuring distances in
the vector space. The term “query-sensitive” means that the
distance measure changes depending on the current query
object. In particular, the weights used for the L1 distance
measure automatically adjust to each query. Using a query-
sensitive measure is a natural way to capture the fact that,
as described in Sec. 4, given a query object, some coor-
dinates of the embedding are more informative than other
coordinates. In general, query-sensitive distance measures
provide a solution to an important issue that arises when ob-
jects are represented as high-dimensional vectors: the need
to identify, for any two objects, the coordinates that are
really important for comparing those objects [1].
Our formulation uses a recent technique for constructing

embeddings using machine learning, that was introduced in
the BoostMap embedding algorithm [2]. The key novelty
of the proposed method is that our algorithm produces an
embedding and a query-sensitive distance measure, with a

well-defined mechanism for adjusting the distance measure
to each query object. Existing embedding methods, includ-
ing the original BoostMap algorithm, produce a global dis-
tance measure. In the datasets we have experimented with,
a query-sensitive distance measure leads to much better re-
trieval performance.
A secondary contribution in this paper is a method for

choosing training data for the learning algorithm. The origi-
nal BoostMap algorithm uses as training data random triples
of objects from the original space. We propose a more selec-
tive method for choosing training data, that leads to embed-
dings that are better optimized for retrieval accuracy. The
method we propose is very simple, but it leads to significant
improvement in the experimental results.
The proposed method is experimentally compared to the

original BoostMap algorithm, as well as to FastMap [12],
which is a well-known existing embedding method. Experi-
ments are performed on two datasets: the MNIST database
of handwritten digits [22], with Shape Context Distance
[4] as the underlying distance measure, and a time-series
database [32] with constrained Dynamic Time Warping as
the underlying distance measure. In both datasets, the al-
gorithm described in this paper yields superior performance
with respect to both the original BoostMap method and
FastMap. For a fixed budget of exact distance computa-
tions per query, and for different integers k, the new method
correctly retrieves all k nearest neighbors for a significantly
higher fraction of queries.

2. RELATED WORK
Various methods have been employed for similarity in-

dexing in multi-dimensional datasets, including hashing and
tree structures [6, 8, 18, 36, 38]. However, the performance
of such methods degrades in high dimensions. This phe-
nomenon is one of the many aspects of the “curse of di-
mensionality”. Another problem with tree-based methods
is that they typically rely on Euclidean or metric proper-
ties, and those properties do not hold in non-metric spaces.
Approximate nearest neighbor methods have been pro-

posed in [17] and scale better with the number of dimensions.
However, those methods are available only for specific sets
of metrics, and they are not applicable to arbitrary distance
measures. In [13], a randomized procedure is used to cre-
ate a locality sensitive hashing structure that can report a
(1 + ε)-approximate nearest neighbor with a constant prob-
ability. In [40] M-trees are used for approximate similarity
retrieval, while [23] proposes clustering the dataset and re-
trieving only a small number of clusters (which are stored
sequentially on disk) to answer each query. In [9, 11, 19]
dimensionality reduction techniques are used where lower-
bounding rules are ignored when dismissing dimensions and
the focus is only on preserving close approximations of dis-
tances. In [34] the authors used VA-files [35] to find nearest
neighbors by omitting the refinement step of the original ex-
act search algorithm and estimating approximate distances
using only the lower and upper bounds computed by the
filtering step. Finally, in [30] the authors partition the data
space into clusters and then the representatives of each clus-
ter are compressed using quantization techniques. Other
similar approaches include [21, 26]. However, all these tech-
niques can be employed mostly for distance functions defined
using Lp norms.
Various techniques appeared in the literature for robust

evaluation of similarity queries on time-series databases when
using non-metric distance functions [20, 32, 37]. These tech-
niques use the filter-and-refine approach, where a computa-
tionally efficient approximation of the original distance is
utilized in the filtering step. Query speedup is achieved by
pruning a large part of the search space at the filter step.
Then, the original, accurate but more expensive distance
measure is applied to the few remaining candidates, during
the refinement step. Usually, the distance approximation
function is designed to be metric (even if the original dis-
tance is not), so that traditional indexing techniques can
be applied to index the database in order to speed up the
filtering stage as well. In our experimental evaluation we
compare our approach with the technique presented in [32].
Also related to our setting is work on distance-based in-

dexing for string similarity. In [25] special modifications to
distance-based indices [8, 18, 38] are proposed for indexing
distance functions that are almost metric. However, unlike
our method, the technique of [25] cannot be applied to gen-
eral distance functions.
In domains where the distance measure is computationally

expensive, significant computational savings can be obtained
by constructing a distance-approximating embedding, which
maps objects into another space with a more efficient dis-
tance measure. A number of methods have been proposed
for embedding arbitrary spaces into a Euclidean or pseudo-
Euclidean space [2, 7, 12, 16, 24, 28, 33, 39]. Some of these
methods, in particular MDS [39], Bourgain embeddings [7,
15], LLE [24] and Isomap [28] are not targeted at speed-
ing up online similarity retrieval, because they still need to
evaluate exact distances between the query and most or all
database objects. Online queries can be efficiently handled
by Lipschitz embeddings [15], FastMap [12], MetricMap [33],
SparseMap [16], and BoostMap [2].
Embedding methods designed for speeding up nearest neigh-

bor retrieval [2, 12, 15, 16, 33] have two attractive properties:
first, they can compute the embedding of a new query object
by comparing that object to a relatively small subset of all
database objects; second, they are formulated in a domain-
independent way, and they can be applied to any space and
distance measure (unlike techniques like [13, 25], for exam-
ple, whose formulation cannot handle arbitrary spaces). At
the same time, when applied to arbitrary spaces, there is no
guarantee that these methods will attain some acceptable
tradeoff between accuracy and efficiency.
The method proposed in this paper belongs to the same

family of approaches as [2, 12, 15, 16, 33]; it tries to solve
the same problem (efficient nearest neighbor retrieval), and
it can be applied to arbitrary spaces and distance measures.
The proposed method can be seen as an extension of Boost-
Map [2]. The main advantage of BoostMap is that it opti-
mizes a measure of embedding quality that is directly related
to how well the embedding preserves the similarity structure
of the original space. A secondary contribution of this paper
is that it shows how to reformulate this measure of embed-
ding quality so that it is more tightly related to the task of
nearest neighbor retrieval. The main contribution consists
of showing how to extend the BoostMap algorithm so that
it produces, together with the embedding, a query-sensitive
distance measure. Given a query object, the query-sensitive
distance measure assigns higher weights to the embedding
coordinates that are important for that query.
Query-sensitive distance measures have been used in [10,

14] to improve the classification accuracy of nearest neigh-
bor classifiers. In these methods, it is assumed that an ini-
tial global (query-insensitive) distance measure is available.
Given a query object, the initial distance measure is iter-
atively refined. In contrast, in this paper we formulate a
method that constructs an embedding and a query-sensitive
distance measure for speeding up nearest neighbor retrieval.
Given a query object, the query-sensitive distance measure
is constructed in a non-iterative way, and no initial distance
measure is given to our algorithm.

3. BACKGROUND
We use X to denote a set of objects, and DX(x1, x2) to

denote a distance measure between objects x1, x2 ∈ X. For
example, X can be a set of images of handwritten digits
(Fig. 3), and DX can be shape context matching as defined
in [5]. However, any X and DX can be plugged into the
formulations described in this paper.
First, we will define some simple embeddings, and then

we will briefly describe the association between embeddings
and classifiers that was introduced in [2].

3.1 Some Simple Embeddings
An embedding F : X → R

d is a function that maps any
object x ∈ X into a d-dimensional vector F (x) ∈ R

d. Dis-
tances in R

d are measured using the Euclidean (L2) metric,
or some other Lp metric. It is assumed that measuring a
single Lp distance between two vectors is significantly faster
than measuring a single distance DX between two objects
of X. This assumption is obeyed in the example datasets
we used in our experiments. For example, with our PC we
can measure close to a million L1 distances between high-
dimensional vectors in R

100 in one second, whereas only 15
shape context distances can be evaluated per second.
A simple way to define one-dimensional (1D) embeddings

is using prototypes [15]. In particular, given an object r ∈
X, we can define an embedding F r : X → R as follows:

F r(x) = DX (x, r) . (1)

The prototype r that is used to define F r is typically called
a reference object or a vantage object [15]. The intuition be-
hind embeddings of type F r is simple: if two objects x1 and
x2 are very similar to each other, we expect their distances
to r, i.e., DX(x1, r) and DX(x2, r) to also be similar. There-
fore, F r is expected to map similar objects to nearby points
on the real line.
Another family of simple, 1D embeddings is proposed in

[12] and used as building blocks for FastMap. The idea is
to choose two objects x1, x2 ∈ X, called pivot objects, and
then, given an arbitrary x ∈ X, to define the embedding
F x1,x2 of x to be the projection of x onto the “line” x1x2:

F x1,x2(x) =
DX (x, x1)

2 +DX(x1, x2)
2 −DX (x, x2)

2

2DX(x1, x2)
. (2)

The reader can find in [12] an intuitive geometric interpre-
tation of this equation, based on the Pythagorean theorem.
These simple 1D embeddings can be used as building

blocks for constructing higher-dimensional embeddings. Em-
beddings of type F x1,x2 are used to construct FastMap [12].
Embeddings of type F r can be combined to form Lipschitz
embeddings [15].

3.2 Associating Embeddings with Classifiers
Let F : X → R

d be a d-dimensional embedding. F acts
as a classifier for the following binary classification problem:
given three objects q, a, b ∈ X, is q closer to a or to b? If we
know F , but we do not know the exact distances DX(q, a)
andDX(q, b), we can provide an answer by simply checking if
F (q) is closer to F (a) or to F (b). If that answer is wrong, we
say that embedding F fails on triple (q, a, b). If the answer is
correct, we say that embedding F succeeds on triple (q, a, b).
If F succeeds on all triples, then F can be used to correctly
identify the true nearest neighbors for all queries.
Simple, 1D embeddings, like the ones we defined above,

are expected to act as weak classifiers [2, 27], i.e., they will
probably have a high error rate, but at the same time they
should provide answers that are, on average, more accurate
than a random guess, which would have an error rate of 50%.
In other words, we expect that a 1D embedding will fail on
many triples (q, a, b), but it will succeed on more than half
of all possible triples.
The key insight in [2] is that, by associating embeddings

with classifiers, we can reduce the problem of embedding
construction to the problem of combining many weak classi-
fiers into a strong classifier. The latter problem of combining
weak classifiers has been extensively studied in the machine
learning community, and a well-known and widely used so-
lution to that problem is the AdaBoost algorithm [27]. The
BoostMap algorithm [2] essentially uses AdaBoost to con-
struct a high-dimensional embedding out of 1D embeddings
of type F r and F x1,x2 . The BoostMap algorithm uses a
training set S of triples (q, a, b), picked randomly from the
available training objects, with the constraint that q is closer
to a than to b. The algorithm constructs an embedding
F : X → R

d in a way that minimizes the fraction of triples
(q, a, b) ∈ S on which the embedding F fails, i.e., triples
(q, a, b) for which F maps q closer to b than to a.

4. MOTIVATION FOR QUERY-SENSITIVE
DISTANCE MEASURES

In the experiments reported in [2], it is shown that it
is often beneficial to generate, using BoostMap, a high-
dimensional embedding, with over 100 dimensions. As pointed
out in [1], finding nearest neighbors in a high-dimensional
space raises the following issues:

• Lack of contrasting: Two high-dimensional objects
are unlikely to be very similar in all the dimensions.

• Statistical sensitivity: The data is rarely uniformly
distributed, and for a pair of objects there may be
only relatively few coordinates that are statistically
significant for comparing those objects.

Figure 1 illustrates the problem of statistical sensitivity.
In that toy example, we define a three-dimensional embed-
ding of the 2D plane using three reference objects. For some
query objects, sometimes a single coordinate is sufficient for
getting near-perfect retrieval results. In particular, if for a
given query object q there is a reference object r really close
to q, then using the 1D embedding F r by itself might give
more accurate results than using the high-dimensional em-
bedding. Figure 1 does not illustrate the problem of lack of
contrasting, but that problem can also be present if the orig-
inal distance measure DX is not metric: then, it is possible

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

database points

reference points

query points

2r

3
r

r1

q
1

q
2

q
3

Figure 1: A toy example illustrating the use of query-

sensitive embeddings. Our space is the set of points in

the unit square [0, 1] × [0, 1]. There are twenty database

objects, three of which (indicated as r1, r2, r3) are selected

as reference objects. Using these reference objects, we

define embedding F (x) = (F r1(x), F r2(x), F r3(x)), and we

use the L1 distance to compare the embeddings of two

objects. There are ten query objects, three of which are

marked as q1, q2, q3. F fails on 23.5% of the 3800 triples

(q, a, b) we can form by picking q from the query objects,

and the pair a, b from the database objects. In con-

trast, the 1D embeddings F r1 , F r2 , F r3 fail respectively

on 39.2%, 36.4%, and 26.6% of the triples. However, if we

restrict our attention to triples (q, a, b) where q = q1, F r1

does better than F : F r1 fails on 5.8% of those triples,

whereas F fails on 11.6% of those triples. Similarly, for

q = q2 and q = q3 respectively, F r2 and F r3 are more

accurate than F . Therefore, for query objects q1, q2, q3,

it would be beneficial to use a query-sensitive weighted

L1 measure, that would respectively use only the first,

second, and third coordinate of F .

for two objects x1 and x2 to be very close to each other, but
have very different distances DX (x1, r) and DX(x2, r) to a
reference object r.
To address these problems, we propose to construct, to-

gether with the embedding, a query-sensitive distance mea-
sure. By “query-sensitive” we mean that the weights used
for the weighted L1 distance (used to measure distances be-
tween embeddings of objects) will not be fixed; instead, they
will depend on the query object. Figure 1 illustrates how
using a query-sensitive distance measure can give better re-
trieval accuracy. Overall, a query-sensitive distance measure
provides a principled way to address the problems described
in [1], by putting more emphasis on coordinates that are
more important for a particular query.

5. CONSTRUCTING AN EMBEDDING AND
A QUERY-SENSITIVE DISTANCE MEA-
SURE

At a high level, our method constructs an embedding us-
ing the following steps:

1. We start by specifying a large family of 1D embed-
dings, using well-known definitions from prior embed-
ding methods.

2. We use 1D embeddings to define binary classifiers,
which estimate for object triples (q, a, b) if q is closer
to a or to b. These classifiers are expected to be pretty
inaccurate, but still better than a random classifier
(which would just guess randomly all the time, and
therefore would have a 50% error rate).

3. We run AdaBoost to combine many classifiers into a
single classifier H , which we expect to be significantly
more accurate than the simple classifiers associated
with 1D embeddings.

4. We use H to define a d-dimensional embedding Fout,
and a query-sensitive weighted L1 distance measure
Dout. It is shown that H is mathematically equivalent
to the combination of Fout and Dout: if, for three ob-
jects q, a, b ∈ X, H predicts that q is closer to a than
it is to b, then, under distance measure Dout, Fout(q)
is closer to Fout(a) than it is to Fout(b).

The main difference between the proposed approach and
the original BoostMap algorithm is introduced in the second
step. Using 1D embeddings, we will define binary classifiers
of a different type than what was used in [2]. We will then
show how using those classifiers as building blocks results
in constructing a query-sensitive distance measure. These
steps are explained in detail in the remainder of this section.

5.1 Defining Query-Sensitive Classifiers from
1D Embeddings

As described earlier, every embedding F corresponds to
a classifier that classifies triples (q, a, b) of objects in X.
Formally, we can say that a triple (q, a, b) is of type 1 if
q is closer to a than to b, type 0 if q is equally close to a and
b, and type -1 if q is closer to b than to a. Given embedding
F , and a distance measure D for comparing vectors, we
can define the classifier F̃ associated with embedding F as
follows:

F̃ (q, a, b) = D(F (q), F (b))−D(F (q), F (a)) . (3)

The sign of F̃ (q, a, b) is an estimate of whether triple (q, a, b)
is of type 1, 0, or -1. We should note that, if F is a 1D
embedding, then F̃ (q, a, b) = |F (q)− F (b)| − |F (q)− F (a)|.
Sometimes, F̃ may do a really good job on triples (q, a, b)

when q is in a specific region, but at the same time it may
be beneficial to ignore F̃ when q is outside that region. For
example, suppose that we have an embedding F r defined
using reference object r. If q = r, then F̃ r will classify cor-
rectly all triples (q, a, b), where a and b are any two objects
of space X. If q �= r, we still expect that, the closer q is to
r, the more accurate F̃ r will be on triples (q, a, b). Figure 1
illustrates such cases.
In [2], the weak classifiers that are used by AdaBoost are

of type F̃ , with F being a 1D embedding. We propose to
use a different type of classifier, that can explicitly model
the fact that any 1D embedding F is more useful in some
regions of the space and less useful in other regions.
In particular, given a 1D embedding F , we need a function

S(q) (which we call a splitter), that will estimate, given a

query q, whether classifier F̃ is useful or not. More formally,

Given: (o1, y1), . . . , (ot, yt); oi ∈ G, yi ∈ {−1, 1}.
Initialize wi,1 =

1
t
, for i = 1, . . . , t.

For j = 1, . . . , J :

1. Train weak learner using training weights wi,j .

2. Get weak classifier hj : G → R.

3. Choose αj ∈ R.

4. Set training weights wi,j+1 for the next round as fol-
lows:

wi,j+1 =
wi,j exp(−αjyihj(xi))

zj
. (6)

where zj is a normalization factor (chosen so thatPt
i=1 wi,j+1 = 1).

Output the final classifier:

H(x) =
JX

j=1

αjhj(x). (7)

Figure 2: The AdaBoost algorithm. This description is

largely copied from [27].

if X is the original space, we use the term splitter to denote
any function mapping X to the binary set {0, 1}. We can
readily define splitters using 1D embeddings. Given a 1D
embedding F : X → R, and a subset V ⊂ R, we can define
a splitter SF,V : X → {0, 1} as follows:

SF,V (q) =

1 if F (q) ∈ V .
0 otherwise .

(4)

Now, suppose we have a subset V ⊂ R and a 1D em-
bedding F : X → R. We define a query-sensitive classifier
Q̃F,V : X3 → R, as follows:

Q̃F,V (q, a, b) = SF,V (q)F̃ (q, a, b) . (5)

At an intuitive level, F̃ is by itself a classifier of triples
(q, a, b). Q̃F,V is a cropped version of F̃ , that gives 0 (i.e.,
a neutral result) whenever F (q) /∈ V . For example, if F =
F r for some reference object r, and V = [0, τ] for some
positive threshold τ , splitter SF,V (q) accepts object q if it is
within distance τ of reference object r. Therefore, the query-
sensitive classifier Q̃F,V will apply F̃ only if q is sufficiently
close to r. By choosing τ in an appropriate way, we can
capture the fact that F̃ should only be applied to objects
within a specified distance from reference object r.

5.2 Overview of the Training Algorithm
The AdaBoost algorithm (taken, with minor modifica-

tions, from [27]) is shown in Figure 2. AdaBoost assumes
that we have a “weak learner” module, which we can call
at each round to obtain a new weak classifier. The goal is
to construct a strong classifier that achieves much higher
accuracy than the individual weak classifiers.
The AdaBoost algorithm simply determines the appro-

priate weight for each weak classifier, and then adjusts the
training weights. The training weights are adjusted so that
training objects that are misclassified by the chosen weak
classifier hj get more weight for the next round. Because

of the training weights, the weak learner is biased towards
returning a classifier that tends to correct mistakes of previ-
ously chosen classifiers. Overall, weak classifiers are chosen
and weighted so that they complement each other. The abil-
ity of AdaBoost to construct highly accurate classifiers by
combining many relatively inaccurate weak classifiers has
been demonstrated in numerous applications (for example,
in [29, 31]).
In our case, the AdaBoost algorithm is adapted to the

problem of constructing an embedding and a query sensitive
distance measure. We adapt AdaBoost to this problem as
follows:

• Each training object oi is a triple (qi, ai, bi) of objects
in X. Because of that, we refer to oi not as a training
object, but as a training triple. The set G from which
training triples are picked can be the entire X3 (the
set of all triples we can form by objects from X), or a
more restricted subset of X3, as discussed in Sec. 6.

• The i-th training triple (qi, ai, bi) is associated with a
class label yi, which is 1 if qi is closer to ai and -1 if qi

is closer to bi.

• Each weak classifier hj is a query-sensitive classifier
Q̃F,V , where F is a one-dimensional embedding and V
is an interval of R.

Also, we pass to AdaBoost some additional arguments:

• A set C ⊂ X of candidate objects. Elements of C will
be used as reference objects and pivot objects to define
1D embeddings of type F r and F x1,x2 .

• A matrix of distances between any two objects in C,
and a matrix of distances from each c ∈ C to each
qi, ai and bi appearing in one of the training triples.

To fully specify the training algorithm, we need to specify
what we do for steps 1, 2 and 3 of the algorithm shown
in Figure 2. In simple terms, this is how those steps are
implemented at each training round j:

• We construct a large set of classifiers Q̃F,V by choos-
ing randomly different 1D embeddings F and different
ranges V ⊂ R.

• We choose, among that large set of classifiers, the one
that is the “best” at the current round, and we assign
a weight to that classifier, using a method suggested in
[27]. Evaluating how good a classifier is at a particular
training round is related to how well that classifier
performs on a training set of triples of objects.

In the next few paragraphs we will discuss how each of
those operations is done, i.e., how we construct a large set
of weak classifiers at each training round, and how we choose
the best one out of them.

5.3 Forming Weak Classifiers
The weak classifiers considered by AdaBoost are classifiers

Q̃F,V as defined in Eq. 5, where F is some 1D embedding
defined using reference objects or pivot objects from the set
C of candidate objects. To pick a range V for Q̃F,V , we
simply compute the values F (x) for every object appearing
in a training triple (qi, ai, bi), and set V to be a random
interval of R containing some of those values. We form many

such ranges V for each F , and for each range we measure the
training error, i.e., the classification error of classifier Q̃F,V ,
on the training triples. When we measure the training error,
we weigh each training triple oi by the current weight wi,j

of that triple in training round j. Therefore, the error of
Q̃F,V will be different at each training round.
At training round j we choose, randomly, a large number

of 1D embeddings. For each selected 1D embedding F , we
find the range VF,j that achieves the lowest training error
at round j. The next classifier will be chosen among the
classifiers Q̃F,VF,j .
Now we are ready to specify how to implement steps 1−3

in Figure 2, for each training round j = 1, . . . , J . Step 1
consists of evaluating each Q̃F,VF,j , so that we can choose
the best weak classifier to add to the strong classifier that
is being assembled. The function Zj(Q̃, α) gives a measure

of how useful it would be to choose hj = Q̃ and αj = α at
training round j:

Zj(Q̃, α) =

tX
i=1

(wi,j exp(−αyiQ̃(qi, ai, bi))) . (8)

The full details of the significance of Zj can be found in [27].

Here it suffices to say that if Zj(Q̃, α) < 1 then choosing

hj = Q̃ and αj = α is overall beneficial, and is expected
to reduce the training error. Given the choice between
two weighted classifiers αh and α′h′, we should choose the
weighted classifier that gives the lowest Zj value. Given hj ,
we should choose αj to be the α that minimizes Zj(hj , α).
Based on the above considerations, in step 1 we find the

optimal α for each weak classifier Q̃F,VF,j . Then, in steps 2
and 3 we set hj and αj respectively to be the weak classifier
and weight that yielded the lowest overall value of Zj .

5.4 Training Output: Embedding and Dis-
tance

The output of the training stage is a classifier H of the
following form:

H =

JX
j=1

αjQ̃F ′
j ,Vj

. (9)

Each Q̃F ′
j
,Vj

is associated with a 1D embedding F ′
j . Clas-

sifier H has been trained to estimate, for triples of objects
(q, a, b), if q is closer to a or to b. However, our goal is to
actually construct not just a classifier of triples of objects,
but an embedding. Here we discuss how to define such an
embedding Fout, and an associated distance measure Dout

to be used to compare vectors.
A particular 1D embedding F can be equal to multiple

F ′
j ’s occurring in the definition of classifier H . We construct
the set F of all unique 1D embeddings used in H , as F =SJ

j=1{F ′
j}, and we denote the elements of F as F1, . . . , Fd.

The embedding Fout : X → R
d is defined as Fout(x) =

(F1(x), . . . , Fd(x)). Obviously, it is a d-dimensional embed-
ding.
Before defining distance measure Dout, we first need to

define an auxiliary function Ai(q), which assigns a weight to
the i-th coordinate, for i = 1, . . . , d:

Ai(q) =
X

j:((j∈{1,...,J})∧(Fi=F ′
j)∧(Fi(q)∈Vj))

αj . (10)

In words, given object q, for coordinate i, we go through

all weak classifiers Q̃F ′
j
,Vj

that make up H . For each such

classifier, we check if the splitter SF ′
j
,Vj

accepts q (i.e., we

check if F ′
j(q) ∈ Vj), and we also check if F

′
j = Fi. If those

conditions are satisfied, we add the weight αj to Ai(q).
Let Fout(q) = (q1, ..., qd), and let x be some other object

in X, with Fout(x) = (x1, ..., xd). We define distance Dout

as follows:

Dout((q1, ..., qd), (x1, ..., xd)) =

dX
i=1

(Ai(q)|qi − xi|) . (11)

Dout(v1, v2) (where v1, v2 are d-dimensional vectors) is like
a weighted L1 measure on R

d, but the weights depend on
v1. Therefore Dout(v1, v2) is not symmetric, and not a met-
ric. We say that Dout(v1, v2) is a query-sensitive distance
measure, since v1 is typically the embedding of a query, and
v2 is the embedding of a database object that we want to
compare to the query.
It is important to note that the way we defined Fout and

Dout, if we apply Eq. 3 to obtain a classifier F̃out from Fout

(with D set to Dout), then F̃out = H . In words, the classifier
corresponding to embedding Fout is equal to the output of
AdaBoost. Here are the main steps of the proof:

Proposition 1. F̃out = H.

Proof:

F̃out(q, a, b) =

Dout(Fout(q), Fout(b))−Dout(Fout(q), Fout(a)) =

dX
i=1

(Ai(q)|Fi(q)− Fi(b)| − Ai(q)|Fi(q)− Fi(a)|) =

dX
i=1

(Ai(q)(|Fi(q)− Fi(b)| − |Fi(q)− Fi(a)|)) =

JX
j=1

(αjSF ′
j,Vj

(q)(|F ′
j(q)− F ′

j(b)| − |F ′
j(q)− F ′

j(a)|)) =

JX
j=1

(αjSF ′
j
,Vj
(q)F̃ ′

j(q, a, b)) =

JX
j=1

(αjQ̃F ′
j,Vj

(q, a, b)) = H(q, a, b) . ✷

This equivalence is important, because it shows that the
quantity optimized by the training algorithm (i.e., classi-
fication error on triples of objects) is not only a property
of the classifier H constructed by AdaBoost, but it is also a
property of the embedding Fout, when coupled with distance
measure Dout. We should emphasize that this equivalence
between classifier H and embedding Fout relies on the way
we define Dout. If, for example we had defined Dout as a Eu-
clidean (L2) distance, or as a query-insensitive L1 distance,
then the equivalence would no longer hold.

6. CHOOSING TRAINING TRIPLES
In the original BoostMap algorithm [2], training triples are

chosen at random. By using a random training set of triples,
BoostMap tries to preserve the entire similarity structure of
the original space X. This means that the resulting em-
bedding is equally optimized for nearest neighbor queries,
farthest neighbor queries, or median neighbor queries. In

cases where we only care about nearest neighbor queries, we
would actually prefer an embedding that gave more accurate
results for such queries, even if such an embedding did not
preserve other aspects of the similarity structure of X, like
farthest-neighbor information.
If we want to construct an embedding for the purpose of

answering nearest neighbor queries, then we can construct
training triples in a more selective manner. The main idea is
that, given a training object qi, the types of triples (qi, ai, bi)
that are related to k-nearest neighbor retrieval accuracy are
triples in which ai is one of the k nearest neighbors of qi,
and bi is not one of the k nearest neighbors of qi. As long as
the embedding does not fail on such triples, the embedding
will correctly identify the set of k nearest neighbors of qi.
Based on the above considerations, given a parameter k1

and given a set Xtr of training objects (typically Xtr is a
subset of the set of database objects) we propose the follow-
ing heuristic for choosing the i-th training triple (qi, ai, bi):

1. Choose a random training object qi ∈ Xtr.

2. Choose a random integer k′ in 1, . . . , k1.

3. Choose ai to be the k
′-nearest neighbor of qi in Xtr.

4. Reset k′ to a random integer between k1+1 and |Xtr|.
5. Choose bi to be the k

′-nearest neighbor of qi in Xtr.

The value of parameter k1 should be based on the maxi-
mum number kmax of nearest neighbors that we may want
to retrieve for an object. For example, if we want to retrieve
up to 50 nearest neighbors per query (kmax = 50), and if Xtr

contains about one tenth of the database, then we should set
k1 = 5, so that for every qi the corresponding ai is likely to
be one of the 50 nearest neighbors of qi.
By choosing training triples this way, the training algo-

rithm concentrates on building an embedding that, for any
query object q, tends to map q closer to q’s kmax nearest
neighbors than to objects not included in q’s kmax nearest
neighbors. In practice, essentially the algorithm focuses on
training triples (q, a, b) such that a is one of the nearest
neighbors of q, that we would like to retrieve, and b is an
object that is so far from q that we explicitly do not want
to retrieve it as a match for q. An embedding that, given q,
fails on many such triples (q, a, b), will fail to preserve the
fact that a is one of the nearest neighbors of q. By using
such triples for training, the learning algorithm will try to
minimize the frequency with which the output embedding
fails on such triples.

7. COMPLEXITY
At each training round we evaluate a number of weak clas-

sifiers by measuring their performance on t training triples,
in order to choose the best weak classifier. If m weak clas-
sifiers are evaluated at each round, the computational time
per training round is O(mt). In contrast, FastMap [12],
SparseMap [16], and MetricMap [33] do not require training
at all.
Before we even start the training algorithm, we need to

compute distances DX from every object in C (the set of
objects that we use to form 1D embeddings) to every object
in C and to every object inXtr (the set of objects from which
we form training triples). We also need all distances between
pairs of objects in Xtr. Computing all those distances can

sometimes be the most computationally expensive part of
the algorithm, depending on the complexity of computing
DX .
If time and memory resources are not limited, then we can

set both C and Xtr equal to the entire database. Otherwise,
we need to create C and Xtr by sampling randomly from the
database. If (as in our experiments) C andXtr have an equal
number of elements, then the number of distances that we
need to precompute is quadratic to |C|. In the experiments
we report some results using relatively small values for |C|.
We will see that, although larger values of |C| clearly im-
prove embedding quality, we can get reasonable results (bet-
ter than, say, using FastMap) even with a small |C|, thus
keeping the number of precomputed distances manageable.
We should emphasize that both the cost of precomputing

distances and the cost of the training algorithm are one-
time preprocessing costs. In many applications, spending the
extra hours or days needed for this type of preprocessing is
an acceptable cost, as long as it results in a higher-quality
embedding, i.e., an embedding that leads to faster retrieval
without sacrificing retrieval accuracy.
With respect to the online retrieval cost, computing the

d-dimensional embedding of a query object takes O(d) time
and requires O(d) evaluations of DX . Comparing the em-
bedding of the query to the embeddings of n database ob-
jects takes time O(dn). For a fixed d, these costs are similar
to those of FastMap [12], SparseMap [16], and MetricMap
[33].
Compared to the original BoostMap algorithm, the pro-

posed method has similar complexity both for the prepro-
cessing steps and the online retrieval.

7.1 Dynamic Datasets
In our discussion so far we have assumed that the database

is static. In some applications, however, we may need to
add or remove objects online. As long as the underlying
distribution of database objects is not altered, adding and
removing objects is pretty straightforward. When adding an
object x we need to compute its embedding Fout(x). If Fout

is d-dimensional, computing Fout(x) requires computing at
most 2d distances DX between x and database objects.
If the underlying distribution of database objects changes

significantly because of additions and removals, we may have
to create a new embedding. A way to check whether the dis-
tribution of database objects has changed significantly is by
measuring, at regular intervals, the error of the current em-
bedding Fout, i.e., the classification error of F̃out on triples of
objects picked (from the current database distribution) the
same way we would choose training triples. When that error
increases above some threshold, we can reuse our algorithm
to construct a new embedding.

8. EMBEDDING APPLICATION: FILTER-
AND-REFINE RETRIEVAL

In applications where we are interested in retrieving the
k nearest neighbors for a query object q, a d-dimensional
embedding F can be used in a filter-and-refine framework
[15], as follows: first, we perform an offline preprocessing
step, in which we compute and store vector F (x) for every
database object x. Then, given a previously unseen query
object q, we perform the following three steps:

• Embedding step: compute F (q), by measuring the

Figure 3: Some examples from the MNIST database of

images of handwritten digits.

distances between q and the reference objects and/or
pivot objects used to define F .

• Filter step: Find the database objects whose associ-
ated vectors are the p most similar vectors to F (q).

• Refine step: sort those p candidates by evaluating the
exact distance DX between q and each candidate.

The assumption is that distance measure DX is computa-
tionally expensive and evaluating distances between vectors
is much faster. The filter step discards most database ob-
jects by measuring distances between vectors. The refine
step applies DX only to the top p candidates. This is much
more efficient than brute-force retrieval, in which we com-
pute DX between q and the entire database.
To optimize filter-and-refine retrieval, we have to choose p,

and often we also need to choose d, which is the dimension-
ality of the embedding. As p increases, we are more likely to
include the true k nearest neighbors in the top p candidates
found at the filter step, but we also need to evaluate more
distances DX at the refine step. Overall, we trade accuracy
for efficiency. Similarly, as d (the dimensionality of the em-
bedding) increases, computing the embedding for the query
object becomes more expensive, but we may also get more
accurate results in the filter step (since each additional di-
mension has been added by the training algorithm in order
to improve the classification error of the embedding), and
thus we may be able to decrease p. The best choice of p
and d will depend on domain-specific parameters like k (i.e.,
how many of the nearest neighbors of an object we want
to retrieve), the time it takes to compute the distance DX ,
the time it takes to compare d-dimensional vectors, and the
desired retrieval accuracy (i.e., how often we are willing to
miss some of the true k nearest neighbors).
We should also note that, as d increases, the filter step

also becomes more expensive, because we need to compare
vectors of increasingly high dimensionality. However, in our
experiments so far, with embeddings of up to 1,000 dimen-
sions, the filter step always takes negligible time; retrieval
time is dominated by the few exact distance computations
we need to perform at the embedding step and the refine
step.
In cases (not encountered in our experiments) when the

filter step takes up a significant part of retrieval time, one
can apply indexing techniques [6, 17, 36] to speed up filter-
ing. We should keep in mind that in the filter step we are
finding nearest neighbors in a real vector space, and many

indexing methods are applicable in such a setting. One of
the advantages of using embeddings is exactly the fact that
we map arbitrary spaces to well-known real vector spaces,
for which many tools are available.

9. EXPERIMENTS
We compared the proposed method to the original Boost-

Map method [2] and FastMap [12]. We used two differ-
ent datasets: the MNIST dataset of handwritten digits [22],
with the Shape Context Distance [4] as the exact distance
measure, and a time series database [32] with constrained
Dynamic Time Warping [32] as the exact distance measure.
The MNIST dataset contains images of isolated handwrit-

ten digits (numbers from 0 to 9). It consists of a training
set of 60,000 images, which we used as the database, and a
test set (disjoint from the training set) of 10,000 images that
we used as query objects. The subjects who produced the
test images were not used in producing the training images.
The Shape Context Distance is introduced in [4]. To com-
pute that distance, 100 shape context features are extracted
from each image. Two images are aligned by doing bipartite
matching between their features (which involves the compu-
tationally expensive Hungarian algorithm). The final dis-
tance is a weighted sum of three terms: the cost of matching
shape context features, the cost of the alignment, and the
intensity-level differences between image subwindows cen-
tered at matching feature locations. A 3-nearest-neighbor
classifier using Shape Context matching gave state-of-the-
art classification accuracy on the MNIST database, with an
error rate of only 0.63%.
The second dataset that we tried was the time-series dataset

used in [32]. To generate that dataset, various real datasets
were used as seeds for generating a large number of time-
series that are variations of the original sequences. Multiple
copies of every real sequence were constructed by incorpo-
rating small variations in the original patterns as well as ad-
ditions of random compression and decompression in time.
The final dataset contains a “database” set of 32,768 se-
quences, and a “query” set of 50 sequences. Sequences are
multi-dimensional, with an average size of 500 points each.
The series were normalized by subtracting the average value
in each dimension. Exact distances were measured using
constrained Dynamic Time Warping, with a warping length
δ = 10% of the total length of the shortest sequence under
comparison as described in [32].
To compare different embedding methods, we used each

of those methods to build embeddings of various dimensions
(the dimensionality ranged from 1 to 600). Then, for each
embedding method, for each k and accuracy percentage B,
we found the optimal parameters (i.e., number of dimensions
of the embedding, and parameter p specifying the number
of database objects to be retained after the filter step) un-
der which we would successfully retrieve all k true nearest
neighbors for a percentage of query objects equal to B, while
minimizing the total number of exact distance computations
per query object.
For the time series dataset, we performed an initial eval-

uation on the 50 queries used as a test set in [32]. Our
method achieved a speed-up factor of 51.2, using filter-and-
refine retrieval, with a 150-dimensional embedding and with
parameter p set to 443. With those settings, the true nearest
neighbor was retrieved correctly for each of the 50 queries.
The indexing method in [32] reports a speed-up of approxi-

mately a factor of 5, while retrieving correctly the true near-
est neighbor for all 50 queries, and measured on the same
set of 50 queries that we used.
However, to get a clearer picture of performance, we de-

cided to use a larger set of queries. To achieve that, we
merged the query set and the database, and from the merged
set we chose (randomly) a new set of 1,000 queries, with
the remaining 31,818 objects used as the database for those
queries. We found that performance on the new set of
queries was not as good as on the initial set of 50 queries; on
the new set of queries, a speedup factor of 50 was obtained
only if we allowed the true nearest neighbor to be missed for
10% of the query objects. At the same time, even on the
new set of queries, our method achieved significant speed-
ups for k-nearest neighbor retrieval with different accuracy
percentages and different values of k. The results reported
in the remainder of this section for the time series dataset
are with respect to the set of 1,000 queries.
In Figures 4 and 5, and in Table 1, we compare the pro-

posed method (denoted as Se-QS) to the original BoostMap
method (denoted as Ra-QI) and FastMap. We also show re-
sults for two intermediate methods, which incorporate only
one of our two modifications to the original BoostMap algo-
rithm. To denote each method, and its relation to the other
methods, we use the following abbreviations:

Ra: Training triples are chosen entirely randomly from the
set of all possible triples, as in the original BoostMap
method.

Se: Training triples are chosen selectively, from a restricted
set of possible triples, using the method we propose in
Sec. 6.

QI: A query-insensitive distance measure Dout is used at
the filter step, as in the original BoostMap method.

QS: A query-sensitive distance measure Dout is used at the
filter step, as proposed in this paper.

Based on these abbreviations, Ra-QI denotes the origi-
nal BoostMap algorithm, and Se-QS denotes the modified
BoostMap algorithm we propose in this paper. Ra-QS and
Se-QI add to the original BoostMap only one of the two
changes that we propose in this paper (either the method for
building a query-sensitive distance measure or the method
for choosing training triples).
The optimal number of exact distance computations (i.e.,

corresponding to optimal settings for the dimensionality of
the embedding and the parameter p) is shown for differ-
ent values of k, from 1 to 50, and different percentages of
accuracy (i.e., 90%, 95%, and 99%), in Figure 4 for the
MNIST dataset and Figure 5 for the time series dataset. To
avoid cluttering the figures, we omit from them the Ra-QS
method, which, overall, gave pretty similar performance to
the Se-QI version. In Table 1 we show, for selected accuracy
percentages and values of k, the number of exact distance
computations required by FastMap, the original BoostMap
method, the proposed method, and both intermediate meth-
ods Se-QI and Ra-QS.
In all cases (except for results on 100% accuracy, which

are dominated by the single query giving the worst results),
query-sensitive embeddings lead to better performance than
embeddings using a global L1 distance measure. In some
cases, query-sensitive embeddings achieve performance that

0 10 20 30 40 50

1024

2048

4096

8192

16384

32768

60000

k

di

st
an

ce
s

fo
r

90
%

 a
cc

ur
ac

y

FastMap
Ra−QI
Se−QI
Se−QS

0 10 20 30 40 50

2048

4096

8192

16384

32768

60000

k

di

st
an

ce
s

fo
r

95
%

 a
cc

ur
ac

y

FastMap
Ra−QI
Se−QI
Se−QS

0 10 20 30 40 50

4096

8192

16384

32768

60000

k

di

st
an

ce
s

fo
r

99
%

 a
cc

ur
ac

y

FastMap
Ra−QI
Se−QI
Se−QS

Figure 4: Comparing FastMap, the original BoostMap

method (denoted as Ra-QI), the proposed method (de-

noted as Se-QS), and intermediate method Se-QI (which

incorporates our method of choosing training triples, but

still constructs a query-insensitive embedding) on the

MNIST database of handwritten digits, using the Shape

Context Distance as the exact distance measure. We

show the number of exact distance computations needed

by each method to achieve retrieval of all k nearest neigh-

bors (k ranging from 1 to 50) for 90%, 95%, and 99% of

the 10,000 query objects that make up the test set of the

MNIST database.

0 10 20 30 40 50

512

1024

2048

4096

8192

16384

31818

k

di

st
an

ce
s

fo
r

90
%

 a
cc

ur
ac

y

FastMap
Ra−QI
Se−QI
Se−QS

0 10 20 30 40 50

2048

4096

8192

16384

31818

k

di

st
an

ce
s

fo
r

95
%

 a
cc

ur
ac

y

FastMap
Ra−QI
Se−QI
Se−QS

0 10 20 30 40 50

4096

8192

16384

31818

k

di

st
an

ce
s

fo
r

99
%

 a
cc

ur
ac

y

FastMap
Ra−QI
Se−QI
Se−QS

Figure 5: Comparing FastMap, the original BoostMap

method (denoted as Ra-QI), the proposed method (de-

noted as Se-QS), and intermediate method Se-QI (which

incorporates our method of choosing training triples, but

still constructs a query-insensitive embedding) on the

time series database, using constrained Dynamic Time

Warping as the exact distance measure. We show the

number of exact distance computations needed by each

method to achieve retrieval of all k nearest neighbors (k

ranging from 1 to 50) for 90%, 95%, and 99% of the 1,000

query objects that we use as a test set.

MNIST Database with Shape Context
k pct FastMap Ra-QI Ra-QS Se-QI Se-QS
1 90 20059 1930 1824 1296 1223
1 95 33858 3161 2789 2190 2135
1 99 56619 6315 5141 4577 4329
1 100 59996 55019 40479 40946 13406
10 90 53852 6280 5233 4631 3866
10 95 58009 9059 6584 5988 5072
10 99 59800 22266 11802 13932 7642
10 100 60000 55019 58677 56936 52066
50 90 59102 14232 9134 9856 6139
50 95 59644 21085 12767 14848 7477
50 99 59980 39311 25878 31176 18510
50 100 60000 59840 59974 59735 59941

Time Series Dataset with Constrained DTW
k pct FastMap Ra-QI Ra-QS Se-QI Se-QS
1 90 8357 1018 898 649 580
1 95 20176 12851 6484 5691 1995
1 99 27082 16236 9743 9072 4269
1 100 27547 16426 13922 9562 6965
10 90 19613 13364 6521 5721 2582
10 95 24888 16270 9346 8262 4251
10 99 27531 24052 13070 9448 6260
10 100 27623 31818 24730 27267 17627
50 90 23289 18821 9757 9043 4997
50 95 27041 26985 12821 9571 6504
50 99 27564 31818 19357 24672 16265
50 100 27742 31818 26748 27267 26883

Table 1: Comparison of FastMap, the original Boost-

Map (denoted as Ra-QI), the proposed method (denoted

as Se-QS), and the two intermediate methods Ra-QS and

Se-QI, on the MNIST dataset based on 10,000 query ob-

jects and the time series dataset based on 1,000 query

objects. For different values of k, and different percent-

ages of accuracy (shown in the “pct” column), we show

the number of exact distance computations required by

each embedding method, assuming that we have set the

two parameters of that method (dimensionality of em-

bedding and number p of matches to keep after the filter

step) to the optimal values that minimize the number

of exact distance computations. For comparison, brute

force search would require 60000 exact distance compu-

tations in the MNIST dataset and 31818 exact distance

computations in the time series dataset.

is two or three times as fast for a fixed error rate. Similarly,
in all cases, except results on 100% accuracy, the method we
introduced in this paper for choosing training triples leads
to better performance than training an embedding with ran-
domly chosen triples. Overall, the proposed method, which
combines both a query-sensitive distance measure and the
new way of choosing training triples, significantly outper-
forms both FastMap and the original BoostMap method.
To train embeddings, for the original BoostMap, the pro-

posed method, and intermediate methods Ra-QS and Se-QI,
we always used a training set of 300,000 triples, generated
from a set Xtr of 5,000 database objects. The set C of candi-
date objects also consisted of 5,000 database objects. Query
objects from the test set were not used in any part of the
training algorithm. Parameter m, the number of weak clas-
sifiers to evaluate at each training round, was set to 2,000.
Parameter k1, used in choosing training triples, was set to 5
for the MNIST dataset and to 9 for the time series dataset,

5 10 15 20 25 30 35 40 45 50

1024

2048

4096

8192

16384

32768

60000

k

di

st
an

ce
s

fo
r

95
%

 a
cc

ur
ac

y

FastMap
Quick Se−QS
Regular Se−QS

Figure 6: Results using an embedding produced using

the Se-QS method, but with sets C and Xtr including

only 200 objects, and using only 10,000 training triples,

so that the preprocessing cost of the Se-QS method be-

comes very small. We compare those results (denoted as

“Quick Se-QS”) to the results for FastMap and method

“Se-QS” as shown in Fig. 4. “Regular Se-QS” denotes

the results using the Se-QS method with |C| and |Xtr|
equal to 5,000, and with 300,000 training triples. For

different values of k, the figure shows the number of ex-

act distance computations required by each embedding

method, in order to retrieve the true k nearest neighbors

for 95% of the 10,000 queries, for the MNIST dataset.

following the guidelines suggested in Sec. 6 for kmax = 50.
This way, embeddings were optimized for retrieval of up to
50 nearest neighbors per query. In each dataset, we con-
structed a FastMap embedding by running the FastMap al-
gorithm on a subset of the database, containing 5,000 ob-
jects.
We also ran an experiment on the MNIST dataset, in

which we used the proposed method, i.e., method Se-QS,
but with relatively small sizes for sets C and Xtr used in the
training algorithm, and with fewer training triples. Both
|C| and |Xtr| were equal to 200 in this experiment, and we
only used 10,000 training triples. Using these settings, the
preprocessing cost of the algorithm becomes much smaller:
both the number of distances DX that we need to precom-
pute is smaller (80,000 distances as opposed to 50,000,000
distances in the previous experiments) and the running time
for the learning algorithm was much shorter (about 20 min-
utes, as opposed to about 10 hours using 300,000 triples).
Fig. 6 shows the results we obtain with these settings, for
95% retrieval accuracy, and compares those results to what
we get using FastMap and using the Se-QS method with |C|
and Xtr equal to 5,000, and with 300,000 training triples.
We see that we still get results that are better than FastMap,
and that are useful overall results. Although spending more
time on preprocessing improves retrieval efficiency (for fixed
accuracy), we can construct useful embeddings even when
the time available for preprocessing is limited.
On average, computing exact Shape Context distances can

be done at the rate of 15 distances per second, and comput-
ing constrained Dynamic Time Warping distances can be
done at the rate of about 60 distances per second, on an
Opteron 2.2GHz processor. To obtain the corresponding
processing times per query for each setting shown in Figs.
4, 5, 6 and Table 1, one simply needs to divide the number
of exact distance computations by 15 for Shape Context and

by 60 for Dynamic Time Warping. Exact distance compu-
tations almost completely determined the processing time
per query; the rest of the calculations took a fraction of a
second for each query.

10. DISCUSSION
The experimental results reported in this paper provide

a quantitative comparison of the proposed algorithm to the
original BoostMap method [2] and FastMap [12], on two dif-
ferent datasets that use non-Euclidean, non-metric distance
measures: the MNIST dataset of handwritten digits using
the Shape Context distance as the underlying distance mea-
sure, and a time series dataset using constrained Dynamic
Time Warping as the underlying distance measure. The ex-
periments demonstrate that the proposed method gives, for
most settings, significantly better results than the original
BoostMap method or FastMap.
The main difference of the proposed method with respect

to existing embedding methods is that it constructs a query-
sensitive distance measure. Such a distance measure cap-
tures the fact that different embedding coordinates are im-
portant for different queries, and thus leads to improved
retrieval accuracy at the filter step of filter-and-refine re-
trieval.
We should stress that both the Shape Context distance

measure and Dynamic Time Warping are non-metric, be-
cause they do not obey the triangle inequality. This means
that even general indexing tools like M-trees [40], designed
for metric spaces, cannot be applied in these datasets. Many
other commonly used distance measures, like the Kullback-
Leibler distance, or the chamfer distance [3] are also non-
metric. Embeddings are the only family of methods that
we are aware of that is not domain-specific and that can be
applied for efficient retrieval in such spaces. Like other em-
bedding methods, our method is general, and can be applied
to arbitrary spaces.
We believe that query-sensitive distance measures may

prove useful in other settings, in addition to embedding-
based nearest neighbor retrieval. A common problem in data
mining, clustering, and pattern recognition applications, is
how to construct a meaningful distance measure for com-
paring high-dimensional vectors. We are interested in ex-
ploring whether our algorithm for learning a query-sensitive
distance measure can offer advantages in such applications.

11. REFERENCES
[1] C. C. Aggarwal. Re-designing distance functions and

distance-based applications for high dimensional data.
SIGMOD Record, 30(1):13–18, 2001.

[2] V. Athitsos, J. Alon, S. Sclaroff, and G. Kollios.
BoostMap: A method for efficient approximate
similarity rankings. In CVPR, 2004.

[3] H. Barrow, J. Tenenbaum, R. Bolles, and H. Wolf.
Parametric correspondence and chamfer matching:
Two new techniques for image matching. In IJCAI,
pages 659–663, 1977.

[4] S. Belongie, J. Malik, and J. Puzicha. Matching
shapes. In ICCV, volume 1, pages 454–461, 2001.

[5] S. Belongie, J. Malik, and J. Puzicha. Shape matching
and object recognition using shape contexts. PAMI,
24(4):509–522, 2002.

[6] C. Böhm, S. Berchtold, and D. Keim. Searching in
high-dimensional spaces: Index structures for
improving the performance of multimedia databases.
ACM Computing Surveys, 33(3):322–373, 2001.

[7] J. Bourgain. On Lipschitz embeddings of finite metric
spaces in Hilbert space. Israel Journal of
Mathematics, 52:46–52, 1985.

[8] T. Bozkaya and Z. Özsoyoglu. Indexing large metric
spaces for similarity search queries. ACM Trans.
Database Syst., 24(3):361–404, 1999.

[9] K. Chakrabarti and S. Mehrotra. Local dimensionality
reduction: A new approach to indexing high
dimensional spaces. In VLDB, pages 89–100, 2000.

[10] C. Domeniconi, J. Peng, and D. Gunopulos. Locally
adaptive metric nearest-neighbor classification. PAMI,
24(9):1281–1285, 2002.

[11] Ö. Egecioglu and H. Ferhatosmanoglu. Dimensionality
reduction and similarity distance computation by
inner product approximations. In International
Conference on Information and Knowledge
Management, pages 219–226, 2000.

[12] C. Faloutsos and K. Lin. FastMap: A fast algorithm
for indexing, data-mining and visualization of
traditional and multimedia datasets. In ACM
SIGMOD, pages 163–174, 1995.

[13] A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. In VLDB,
pages 518–529, 1999.

[14] T. Hastie and R. Tibshirani. Discriminant adaptive
nearest-neighbor classification. PAMI, 18(6):607–616,
1996.

[15] G. Hjaltason and H. Samet. Properties of embedding
methods for similarity searching in metric spaces.
PAMI, 25(5):530–549, 2003.

[16] G. Hristescu and M. Farach-Colton. Cluster-preserving
embedding of proteins. Technical Report 99-50, CS
Department, Rutgers University, 1999.

[17] P. Indyk. High-dimensional Computational Geometry.
PhD thesis, Stanford University, 2000.

[18] C. T. Jr., A. Traina, B. Seeger, and C. Faloutsos.
Slim-trees: High performance metric trees minimizing
overlap between nodes. In 7th International
Conference on Extending Database Technology
(EDBT), pages 51–65, 2000.

[19] K. V. R. Kanth, D. Agrawal, and A. Singh.
Dimensionality reduction for similarity searching in
dynamic databases. In ACM SIGMOD International
Conference on Management of Data, pages 166–176,
1998.

[20] E. Keogh. Exact indexing of dynamic time warping. In
VLDB, pages 406–417, 2002.

[21] N. Koudas, B. C. Ooi, H. T. Shen, and A. K. H. Tung.
Ldc: Enabling search by partial distance in a
hyper-dimensional space. In ICDE, pages 6–17, 2004.

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[23] C. Li, E. Chang, H. Garcia-Molina, and
G. Wiederhold. Clustering for approximate similarity
search in high-dimensional spaces. IEEE TKDE,

14(4):792–808, 2002.

[24] S. Roweis and L. Saul. Nonlinear dimensionality
reduction by locally linear embedding. Science,
290:2323–2326, 2000.

[25] S. C. Sahinalp, M. Tasan, J. Macker, and Z. M.

Özsoyoglu. Distance based indexing for string
proximity search. In ICDE, pages 125–136, 2003.

[26] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima.
The A-tree: An index structure for high-dimensional
spaces using relative approximation. In VLDB, pages
516–526, 2000.

[27] R. Schapire and Y. Singer. Improved boosting
algorithms using confidence-rated predictions.
Machine Learning, 37(3):297–336, 1999.

[28] J. Tenenbaum, V. d. Silva, and J. Langford. A global
geometric framework for nonlinear dimensionality
reduction. Science, 290:2319–2323, 2000.

[29] K. Tieu and P. Viola. Boosting image retrieval. In
CVPR, pages 228–235, 2000.

[30] E. Tuncel, H. Ferhatosmanoglu, and K. Rose.
Vq-index: An index structure for similarity searching
in multimedia databases. In Proc. of ACM
Multimedia, pages 543–552, 2002.

[31] P. Viola and M. Jones. Rapid object detection using a
boosted cascade of simple features. In CVPR,
volume 1, pages 511–518, 2001.

[32] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and
E. Keogh. Indexing multi-dimensional time-series with
support for multiple distance measures. In Proc. of
ACM SIGKDD, pages 216–225, 2003.

[33] X. Wang, J. Wang, K. Lin, D. Shasha, B. Shapiro,
and K. Zhang. An index structure for data mining and
clustering. Knowledge and Information Systems,
2(2):161–184, 2000.

[34] R. Weber and K. Bohm. Trading quality for time with
nearest-neighbor search. In International Conference
on Extending Database Technology: Advances in
Database Technology, pages 21–35, 2000.

[35] R. Weber, H.-J. Schek, and S. Blott. A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces. In VLDB, pages
194–205, 1998.

[36] D. White and R. Jain. Similarity indexing: Algorithms
and performance. In Storage and Retrieval for Image
and Video Databases (SPIE), pages 62–73, 1996.

[37] B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient
retrieval of similar time sequences under time warping.
In Proc. of ICDE, pages 201–208, 1998.

[38] P. Yianilos. Data structures and algorithms for
nearest neighbor search in general metric spaces. In
ACM-SIAM Symposium on Discrete Algorithms, pages
311–321, 1993.

[39] F. Young and R. Hamer. Multidimensional Scaling:
History, Theory and Applications. Lawrence Erlbaum
Associates, Hillsdale, New Jersey, 1987.

[40] P. Zezula, P. Savino, G. Amato, and F. Rabitti.
Approximate similarity retrieval with M-trees. The
VLDB Journal, 4:275–293, 1998.

