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ABSTRACT
Approximate string matching is a problem that has received
a lot of attention recently. Existing work on information
retrieval has concentrated on a variety of similarity mea-
sures (TF/IDF, BM25, HMM, etc.) specifically tailored for doc-
ument retrieval purposes. As new applications that depend
on retrieving short strings are becoming popular (e.g., lo-
cal search engines like YellowPages.com, Yahoo!Local, and
Google Maps) new indexing methods are needed, tailored
for short strings. For that purpose, a number of index-
ing techniques and related algorithms have been proposed
based on length normalized similarity measures. A common
denominator of indexes for length normalized measures is
that maintaining the underlying structures in the presence
of incremental updates is inefficient, mainly due to data de-
pendent, precomputed weights associated with each distinct
token and string. Incorporating updates usually is accom-
plished by rebuilding the indexes at regular time intervals.
In this paper we present a framework that advocates lazy up-
date propagation with the following key feature: Efficient,
incremental updates that immediately reflect the new data
in the indexes in a way that gives strict guarantees on the
quality of subsequent query answers. More specifically, our
techniques guarantee against false negatives and limit the
number of false positives produced. We implement a fully
working prototype and illustrate that the proposed ideas
work really well in practice for real datasets.

Categories and Subject Descriptors
H.2 [Information Systems]: Database Management

General Terms
Algorithms

1. INTRODUCTION
A variety of applications deal with short strings. Ex-

amples include directory search that retrieves business list-
ings relevant to a short query string (e.g., YellowPages.com,
Yahoo!Local, Google Maps) and data cleaning and record
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linkage applications on relational data that try to match
records across tables and databases (e.g., employee names
and addresses) [16, 8]. Given that queries often contain
spelling mistakes and other errors, and stored data have in-
consistencies as well, effectively dealing with short strings
requires the use of specialized approximate string match-
ing indexes and algorithms. Previous work on information
retrieval has focused mostly on document retrieval (e.g.,
Google [11], Lucene [1], FAST [10]). Although fundamen-
tally documents are long strings, these approaches make as-
sumptions that in general are not true when dealing with
shorter strings. For example, the frequency of a term in a
document might suggest that the document is related to a
particular query or topic with high probability, while the
frequency of a given token or word in a string does not im-
ply that a longer string (containing more tokens) is more
similar to the query than a shorter string. Or the fact that
shorter documents are preferred over longer documents (for
parsimony) conflicts with the fact that in practice for short
queries the vast majority of the time users expect almost
exact answers (answers of length similar to the length of
the query). This is compounded by the fact that for short
strings length does not vary as much as for documents in the
first place, making some length normalization strategies in-
effective. Moreover, certain other properties of short strings
enable us to design very fast specialized approximate string
matching indexes in practice [2, 22, 13, 18].

In many applications it is not uncommon to have to exe-
cute multiple types of searches in parallel in order to retrieve
the best candidate results to a particular query, and use a
final ranking step to combine the results (e.g., almost ex-
act search versus sub-string search, ignore special characters
search, full string search or per word search, 2-grams or 3-
grams or 4-grams, edit distance versus TF/IDF search). From
our experience, when dealing with short string queries, the
majority of users are looking for almost exact matches (e.g.,
the queries ‘wallmart’, ‘wal-mart’, and ‘wal mart’ should all
return the correct listing ‘walmart’, instead of ‘walgreens
wallpaper mart’). In that respect, we would like to build in-
dexes that can retrieve almost exact matches as fast as pos-
sible, and revert to more“fuzzy” (and hence slower) searches
as a subsequent step, in order to be able to provide interac-
tive responses for the majority of queries (e.g., in the form
of a text completion box as the user is typing the query).

Recently, the work in [13] showed that using L2 length
normalization when building the inverted indexes enables
us to retrieve almost exact matches almost for free by using
very aggressive pruning strategies on the inverted lists. Nev-



ertheless, the drawback of this approach is that the indexes
are expensive to construct and they do not support incre-
mental updates. Generally speaking, even though various
types of length normalization strategies have been proposed
in the past, approaches that have strict properties that can
enable aggressive index pruning are hard to maintain incre-
mentally, while simpler normalization methods are easier to
maintain but suffer in terms of query efficiency and result
quality, yielding slower answers and significantly larger (i.e.,
fuzzier) candidate sets.

A key issue that we have to deal with in a real system
is that data is continuously updated. A small number of
updates to the dataset would necessitate near complete re-
computation of an L2 normalized index, since L2 is sensitive
to the total number of records in the dataset, and the distri-
bution of tokens (n-grams, words, etc.) within the strings.
Given that datasets tend to contain tens of millions of strings
and that strings could be updated on an hourly basis, recom-
putation of the indexes can be prohibitively expensive. In
most practical cases, updates are buffered and the indexes
are rebuilt on a weekly basis. Index recomputation typically
takes up to a few hours to complete. However, the online
nature of some applications necessitates reflecting updates
to the data as soon as possible. Hence, being able to support
incremental updates as well as very efficient query evalua-
tion are critical requirements.

In [15] two techniques were proposed for enabling prop-
agation of updates to the inverted indexes. The first was
blocking the updates and processing them in batch. The
second was thresholding updates and performing propaga-
tion in multiple stages down the index, depending on the
update cost one is willing to tolerate. That work presented
heuristics that perform well in practice, based on various ob-
servations about the distribution of tokens in real data, but
it did not provide any theoretical guarantees with respect
to answer accuracy while updates have not been propagated
fully. In our work we develop an update propagation frame-
work on length normalized inverted indexes that incorpo-
rates updates very efficiently and at the same time provides
strict guarantees on the precision of query answers on the
updated index. We show that our algorithms can propagate
a batch of daily updates in a matter of minutes, rather than
the few hours that it would take to rebuild the index, while
the updated index can be used to answer queries very effi-
ciently with no false negatives and a small number of false
positives with respect to the answers that would be provided
by fully propagated updates. We study the properties of the
proposed updating framework theoretically using a rigorous
analysis, and illustrate its efficiency on real datasets and
updates, through a comprehensive experimental study.

Section 2 discusses length normalized inverted indexes in
detail. Section 3 presents a high level description of the pro-
posed update propagation framework. In Section 4 we con-
duct a detailed theoretical analysis of the approach. Section
5 discusses the update propagation algorithm in detail. Sec-
tion 6 presents a thorough experimental evaluation. Related
work is discussed in Section 7. Finally, Section 8 concludes
the paper.

2. PRELIMINARIES
Indexes for approximate string matching are mostly based

on token decomposition of strings (e.g., into n-grams or
words) and building inverted lists over these tokens. Then,

similarity of strings is measured in terms of similarity of the
respective token sets (e.g., by using the vector space model
to compute cosine similarity, or positional tokens to estimate
edit distance). Consider strings “Walmart” and “Wal-mart”.
We can decompose the two strings in 3-gram sets {‘Wal’/1,
‘alm’/2, ‘lma’/3, ‘mar’/4, ‘art’/5} and {‘Wal’/1, ‘al-’/2, ‘l-
m’/3, ‘-ma’/4, ‘mar’/5, ‘art’/6}. The two sets have three
3-grams in common, one of which matches in position ex-
actly, while the other two match the position within distance
one. Using the two sets we can compute both TF/IDF based
cosine similarity scores and an upper bound on the edit dis-
tance between the two strings.

Formally, consider a collection of strings D, where every
string consists of a number of tokens from universe U . For
example, let string s = {t1, . . . , tn}, ti ∈ U . Let df(ti) be
the total number of strings in D containing token ti and N
be the total number of strings. Then:

idf(ti) = log2 (1 + N/df(ti)). (1)

Another popular definition of idf is based on the Okapi BM25
[20] formula:

idf(ti) = log2

N − df(ti) + 0.5

df(ti) + 0.5
. (2)

The L2 length of string s is computed as

L2(s) =

sX
ti∈s

idf(ti)2, (3)

and one can also compute simpler lengths based on L1(s) =P
ti∈s idf(ti), or the number-of-tokens normalization L0(s) =P
ti∈s 1. Define the L2 normalized IDF, BM25 similarity of

strings s1 and s2 as:

S2(s1, s2) =
X

ti∈s1∩s2

idf(ti)2

L2(s1)L2(s2)
, (4)

assuming that for short strings the token frequency of the
majority of tokens is equal to 1. L2 normalization forces
similarity scores in the range [0, 1]. We can define score func-
tions with similar properties for L1. On the other hand, with
L0 normalization the range of similarity scores is bounded
only by the maximum string length in the dataset. Fur-
thermore, for L2 an exact match to the query always has
similarity equal to one (it is the best match). On the other
hand, for L0 an exact match to the query is not always
the best match. In other words, exact matches can have
similarity with the query smaller than non-exact matches.
This is easy to see with an example. Referring to Figure
1, assume that q = {t1, t2, t3} with L0(q) = 3. Let similar-
ity S0(q, s) =

P
ti∈q∩s idf(ti)2/L0(q)L0(s). Let data strings

s1 = {t1} and s4 = {t1, t2, t3}. Then, S0(q, s1) = 100/3 >
S0(q, s4) = 168/9. It is easy to see that irrespective of the
actual similarity function used we can always construct such
examples. Given that we are interested in identifying almost
exact matches fast, the benefits of using L2 normalization
are evident.

Consider an approximate string matching query that, given
a query string q, retrieves from the dataset all strings s ∈ D :
S?(q, s) ≥ τ . It can be shown that by using S2 similarity:

Theorem 1 (Length Boundedness [13]). Given query
string q, string s and threshold τ , if S2(q, s) ≥ τ it follows

that τL2(q) ≤ L2(s) ≤ L2(q)
τ

.
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Figure 1: Inverted lists sorted by decreasing token
contribution in the overall score.

Clearly, by using Theorem 1 we can immediately prune all
strings whose lengths fall outside the given bounds, hence
enabling very aggressive pruning of indexed strings. Notice
that given the length of the query string, the theorem deter-
mines which database strings have lengths either too short
or too long to actually exceed the user defined similarity
threshold. This is irrespective of the number of tokens these
strings have in common with the query, or the magnitude of
the idfs of the common tokens. On the other hand, it can be
shown easily using counter-examples, that no such property
holds in the vector space model for L0. Hence, the benefits
of using L2 in terms of query answering efficiency are also
evident (experimental evidence of which appears in Section
6).

Typical approximate string matching indexes consist of
inverted lists built on the tokens in U . Formally, let:

w(s, ti) = idf(ti)/L?(s), (5)

be the partial score contribution of token ti in S?(q, s), in-
dependent of q. We construct one inverted list per token
ti ∈ U , that consists of one pair 〈s, w(s, ti)〉 per string s
containing ti. An example of inverted lists corresponding to
three tokens t1, t2, t3 appears in Figure 1, where data strings
from the database are associated with a unique identifier in
the index, to save space.

Let q = {t1, . . . , tn} with length L?(q). We can find all
strings that exceed similarity score τ by scanning the in-
verted lists corresponding to t1, . . . , tn and computing S?(q, s)
for all s. If lists are sorted by string id we can use multi-way
merge sort based algorithms to compute string scores very
fast. Still, these algorithms need to read lists exhaustively in
order to find all strings with similarity larger than τ . Alter-
natively, assume that lists are sorted in decreasing w(s, ti)
order (and secondarily in increasing string id order). Given
monotonic similarity functions (e.g., Equation (4)), we can
use TA/NRA [9, 13] algorithms to compute the scores in-
crementally, and terminate before exhaustively reading the
lists. Moreover, when using L2 lengths to build the lists, we
can make use of Theorem 1 to restrict the part of the lists

we scan within the window τL2(q) ≤ L2(s) ≤ L2(q)
τ

(since
lists are implicitly sorted by increasing string lengths when
they are sorted by decreasing partial weights w), dramati-
cally limiting the total size of the lists we have to examine,
hence improving efficiency of query answering.

An example is shown in Figure 1. Assume that query q
consists of only three tokens t1, t2, t3. In order to compute
the similarity score of all database strings that have at least
one token in common with the query we simply have to scan
the three inverted lists corresponding to the query tokens
and sum up the partial weights (multiplied by the query
token weights as in Equation (4)). Notice that only string

id 4 is contained in all three lists. There are two cases here.
Either string 4 is the same as the query, or string 4 is a
super-set of the query. By using the length of string 4 we
can conclusively determine either case. Assuming that the
partial weights in the lists have been computed using L2

lengths, we can easily see that the length of string 4 is equal
to w(4, t1) = 10/L2(4) ⇒ L2(4) = 10/0.5 = 20, while the
length of the query string is

√
102 + 82 + 22 = 12.96. Now,

given a similarity threshold τ and by using Theorem 1 we can
compute tight partial weight ranges within each list that we
have to examine, in order to deterministically find all strings
with similarity larger than τ .

The extra cost of building the length normalized inverted
lists stems from the need to sort the lists in decreasing order
of partial weights. The prohibitive cost of supporting incre-
mental updates stems from the fact that L2 lengths depend
on token idfs, idfs change as updates occur, and hence the
length of any string may change even if the string itself did
not change. In contrast, notice that with L0 normalization
the length of a string does not depend on the idfs of the
string tokens, hence maintaining the lists is easier and less
expensive. On the other hand, L0 normalization is more
relevant to document retrieval, where there is no focus on
finding almost exact matches to query strings, L0 does not
offer the query answering efficiency advantages of L2, and
finally, the proposed lazy update propagation framework for
L2 will result in incremental updates that are as fast as fully
propagated updates for L0, and with an insignificant drop
in query answer precision.

3. PROPAGATING UPDATES

3.1 Building from scratch
The easiest way to propagate a set of updates is to re-

build the inverted lists from scratch. For large datasets this
is infeasible on a frequent basis since this is a very expensive
operation, especially for length normalized indexes. In this
section we give a detailed analysis of the construction pro-
cess to clearly illustrate the costs associated with building
these indexes.

The first step of the construction process is a linear scan
over the data strings, pre-processing of the data to format
it appropriately (make it case insensitive, remove special
characters, stemming, etc.), extraction of tokens (n-grams
or words) and computation of token frequencies. At the
end of the first pass we can compute the idf of each token.
After idfs have been computed, a second pass over the data is
performed (after performing exactly the same pre-processing
on the strings that occurred during the first pass).1 During
the second pass, the tokens of every string are generated
once again, the normalized length of the string is computed
(using the idfs from the previous step for L2 normalization),
and the sorted inverted lists are created. Notice that for
L0 normalization we only need to perform one pass over the
data since the idfs are not needed for computing the length
of the strings.

The goal of the second pass is to prepare the tokens for
building sorted inverted lists. It should be mentioned here
that if we are not willing to tolerate the cost of sorting the
lists, we can always use unsorted lists and exhaustive scan

1Alternatively we can store the pre-processed strings in an
intermediate file in case pre-processing is expensive.



Algorithm 3.1: Construct(D)

for each s ∈ D :

do


Pre-process s
for each t ∈ s : df(t)+ = 1

for each s ∈ D :

do


Compute L2(s)
for each t ∈ s : append〈s, w(s, t)〉tolist(t)

for each t

do


Sort list(t) on w
Build B-tree

Figure 2: Selection sort construction algorithm.

querying strategies instead of TA/NRA algorithms (with ei-
ther L0 or L2), but for a steep penalty on query performance
(as will be seen in Section 6). In the rest we concentrate only
on sorted inverted lists. There are two ways to accomplish
this task. The first is to prepare the tokens for external sort-
ing (lexicographically by token and numerically by partial
weight). After performing the external sort the final sorted
file can be split easily into one inverted list per token (e.g.,
by bulk loading one B-tree [7] per token). The second op-
tion is to use a version of selection sort directly to secondary
storage as tokens are being generated. The idea is to cre-
ate one empty inverted list per token (with the potential of
having to manage thousands of files at a time and thrashing
the disk) and store tokens in their respective files as they
get generated. Then, after all inverted lists have been pop-
ulated, we scan and sort each inverted list by partial weight
independently (either in main memory if the list is small or
using external sorting if the list is large). Alternatively, we
can directly create one B-tree per token and direct each to-
ken to the appropriate B-tree as it is generated, again with
the adverse effect of thrashing the B-trees. A sample list
construction algorithm is shown in Algorithm 3.1.

At first it might appear that using external sorting is more
efficient than having to manage a very large number of open
files or B-trees for the selection sort step. Nevertheless,
there are several trade-offs that need to be taken into ac-
count. The cost of using buffered files is that files need to
be flushed, closed and reopened on demand as main mem-
ory becomes full. The cost of directly inserting into B-trees
is the random I/O incurred per B-tree insertion. The ex-
ternal sort approach has to read and write each token to
disk multiple times (at least once in the beginning to cre-
ate the initial buckets, a second time for the first merging
step, and a third time for splitting the final sorted file and
creating the B-trees), which can become prohibitive when
dealing with tens of millions of short strings that get de-
composed into several hundred million tokens. On the other
hand, external sort will scale irrespective of the total avail-
able main memory size and dataset size. Our experiments
show that when there are only a few lists (hundreds to a few
thousand), selection sort directly to buffered files and subse-
quent bulk loading of B-trees outperforms external sorting
on small data sets (up to tens of millions of tokens). How-
ever, when the number of lists is huge, or the data sets are
very large (several hundred million tokens), external sorting
is the fastest.

For example, indexing the 2.5 million author names in
the DBLP dataset [17] produces 40 million 3-grams and 42
million 4-grams. For this dataset we have to manage ap-
proximately 24,000 inverted lists when using 3-grams and

ID Author Name # of papers

1 Michael Carrey 36
2 David DeWitt 33
3 Surajit Chaudhuri 31
4 Jeffrey Naughton 29
5 Divesh Srivastava 28
6 Michael Stonebraker 28
7 Joseph Hellerstein 27
8 Hector Garcia-Molina 26
9 Raghu Ramakrishnan 26

Table 1: Authors with more than 25 papers in ACM
SIGMOD until 2007.

161,000 for 4-grams. Clearly, as the number of lists explodes,
it becomes more and more expensive to manage the buffered
files needed for selection sort, while external sort uses a fixed
amount of memory irrespective of the number of lists. On
the other hand, for the Business Listings dataset (see Sec-
tion 6) that generates approximately 365 million n-grams,
selection sort is almost as efficient as external sorting.

3.2 Incremental updates: An example
In the rest we focus on L2 normalized indexes, since L0 is

easier to maintain. Consider Table 1 containing the names
of authors who have more than 25 papers in ACM SIG-
MOD. In the following analyses and examples we will as-
sume that all strings are decomposed into n-grams, and
specifically view the tokens in U as n-grams. For example
string“Michael Carrey”, decomposed into 3-grams, becomes:
{‘##M’, ‘#MI’, ‘MIC’, . . ., ‘ CA’, ‘CAR’, ‘ARR’, ‘RRE’,
‘REY’, ‘EY#’, ‘Y##’}. The table contains 153 distinct
3-grams (including the special beginning and end of word
3-grams and after ignoring case). Only fourteen of them ap-
pear in more than one string. The most frequent 3-grams
are ‘CHA’ and ‘N##’, with three appearances. Consider
now that we build the inverted lists corresponding to the
153 3-grams, and that insertions, deletions and modifica-
tions arrive at regular time intervals. A single insertion or
deletion of a string changes the total number of strings N
in the table, and hence theoretically the idfs of all 3-grams,
according to Equations (1) and (2). Complete propagation
of the update would require recomputation of the length
of each string (see Equation (5)), and hence updating all
153 lists. Consider now a modification of a single string,
for example fixing the spelling mistake “Michael Carrey” to
“Michael Carey”. This modification has three consequences:
1. A change in the length of string 1; 2. The deletion (and
subsequent disappearance) of 3-grams ‘ARR’ and ‘RRE’; 3.
The insertion of 3-gram ‘ARE’, which is a new 3-gram. A
by-product of consequence 1 is that the partial weight of
string 1 has to be updated in all inverted lists correspond-
ing to the fifteen 3-grams comprising string 1. Nevertheless,
consequences 2 and 3 have minor effects. The idfs of exist-
ing 3-grams do not get affected, since the deleted 3-grams
were contained only in the modified string, and the newly in-
serted 3-gram did not exist in the table before the insertion.
Alternatively, consider the modification “Michael Carrey” to
“Micael Carrey”, essentially deleting 3-grams ‘ICH’, ‘CHA’,
and ‘HAE’. The by-product of deleting one occurrence of
3-gram ‘CHA’, and hence changing the idf of this 3-gram, is
that the lengths of all three strings containing this 3-gram
change. This in turn means that the 46 lists corresponding
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Figure 3: The inverted index represented conceptu-
ally by a sparse matrix M (with the actual ordering
of strings within each list not being portrayed).

to the 3-grams contained in these three strings need to be
updated, since they contain partial weights computed us-
ing the old lengths of the strings. Propagating an update
that changes the idf of a very frequent 3-gram necessitates
updating a large fraction of the inverted lists. Clearly, in
order to be able to support incremental updates we need
to propagate updates more efficiently, by relaxing the exact
recomputation of idfs, but at the same time being able to de-
terministically compute query results with strict guarantees
on the quality of answers.

3.3 Detailed analysis
First, we analyze the effects of fully propagating inser-

tions, deletions and modifications to the inverted index. Then,
we show how to propagate the updates in stages, in order to
reduce the update cost in a way that limits the maximum
loss in precision, when compared to a fully updated index.

For ease of exposition, consider that the inverted index is
represented conceptually by a sparse matrix M where each
row corresponds to a string in the database, and each column
to a token from U . Each cell Mi,j contains a partial weight
w(si, t

j) if string si contains token tj , and zero otherwise.
An example is shown in Figure 3 (partial weights omitted
for clarity).

3.3.1 Insertions.
Consider the example in Figure 3. An insertion can have

one or more of the following consequences:

1. It can generate new tokens, and thus the creation of
new columns in M . For example token t7, after inser-
tion of string s7.

2. It might require adding new strings in existing inverted
lists (as for columns t2, t5, t6), hence affecting the idfs
of existing tokens.

3. Most importantly, after an insertion the total number
of strings N increases by one. As a result the idf of
every single token gets slightly affected, which affects
the length of every string and hence all partial weights
in matrix M . A fully propagated update would have
to touch every single non-empty cell in M .

4. String entries in inverted lists that have no connec-
tion to the directly updated tokens might need to be
updated. This happens when the length of a string
changes due to an updated token, triggering an up-
date to all other lists corresponding to the rest of the
tokens contained in that string.

5. The order of strings in a particular inverted list can
change. This happens when a different number of
tokens between two strings gets updated (e.g., three
tokens in one string and only one token in another),
hence affecting the length of one string more than the
length of the other.

Let us concentrate on inverted list t1, containing strings
s4, s5, s6. None of these strings contain any of the in-
serted tokens t2, t5, t6, t7. No matter how the lengths of
these strings change (due to a change in N), the relative
order of their partial weights will remain unaffected. Hence,
updating the list requires only updating the partial weights
of strings contained therein. Focus now on column t4, con-
taining strings s1, s2, s4. Notice that s1 = {t4, t5, t6} and
s2 = {t2, t4}. Clearly, depending on the new idf of t2, t5, t6,
the relative order of the partial weights of these two strings
might actually change. The important thing to notice in
this example is that an insertion can affect the ordering of
strings even in lists that are not directly related to the up-
date. Order changes are particularly expensive. If, for ex-
ample, inverted lists are maintained as B-trees with partial
weights as the key, simply modifying partial weights can be
accomplished with a sequential scan of the leaf level and
a bottom-up rebuild of the B-tree. Changing ordering, on
the other hand, requires in addition re-sorting the data first.
Notice also that identifying the lists containing a particular
string whose partial weight needs to be updated is an expen-
sive operation. To accomplish this we need to retrieve the
actual string and find the tokens it is composed of. There
are two alternatives for retrieving the strings. First, we can
store the exact string along with every partial weight in all
lists. This solution of course will duplicate each string as
many times as the number of tokens it is composed of. The
second option is to store unique string identifiers in the lists,
and perform random accesses to the database to retrieve the
strings. This solution will be very expensive if the total num-
ber of strings contained in a modified list is too large.

3.3.2 Deletions.
A deletion has the opposite effects of an insertion. A to-

ken might disappear if the last string containing the token
gets deleted. Various entries might have to be deleted from
a number of inverted lists, thus changing the idfs of exist-
ing tokens. The number of strings N will decrease by one.
Thus, the idf of all tokens, and hence, the lengths and partial
weights of all strings will slightly change, causing a cascading
effect similar to the one described for insertions.

3.3.3 Modifications.
A modification does not change the total number of strings

N , and hence does not affect the idf of tokens not contained
in the strings being updated. Nevertheless due to a modi-
fication, new tokens can be created and old tokens can dis-
appear. In addition, a modification can change the idf of
existing tokens, with similar cascading effects. Going back
to the example in Figure 3, assume that string s7 is mod-
ified by a deletion of token t2. The idf of t2 changes and
hence the lengths of all strings contained in list t2 change,
i.e. strings s2, s7. This means that we need to modify the
partial weights of these strings in every other inverted list
that contains them, i.e., lists t4, t5, t6, t7 in the example.



3.4 Relaxed propagation
Fully propagating updates for L2 normalization is infea-

sible for large datasets if updates arrive frequently. The
alternative is to relax equations (1) – (4) in order to limit
the cascading effect of a given update. We can partially
propagate updates in a way that provides guarantees on the
quality of query answers.

3.4.1 Relaxation of N .
What causes the need for a complete recomputation of

the index during insertions and deletions is the change of
token idfs due to the modification of the total number of
strings N . We can introduce a slack in how often we update
N and keep idfs constant within a range of updates. Let
Nb be the total number of strings when the inverted index
was built. Then, Nb was used for computing the idfs of all
tokens. Assume that we do not require a recomputation of
idfs, unless if the current value of N diverges significantly
from Nb (we quantify this change in the next section). Given
a query q we need to quantify the loss of precision in eval-
uating the relaxed similarity S∼2 (q, s) for all s ∈ D, given
idfs computed using Nb instead of N . Intuitively, we do
not expect the idfs to be affected substantially given the log
factor in Equations (1) and (2) for reasonable divergence of
N . Relaxing N alleviates the need to recompute all idfs on
a regular basis. Nevertheless, whenever N deviates outside
some predefined bounds, we will have to rebuild the inverted
index from scratch. The hope is that for balanced insertions
and deletions, this will rarely occur.

3.4.2 Relaxation of df .
Assume now that we would also like to limit the effect of

an update when the idf of a specific token changes, due to
an insertion, deletion, or modification. Remember that a
single token idf modification can have a dire cascading ef-
fect on a large number of inverted lists, as already discussed
in Section 3.3.3. Assume that the idf of token ti has been
computed using document frequency dfp(ti) at the time the
inverted index was built or the last time updates were prop-
agated to the index. In this case we allow some slack in the
recomputation of the exact idf of ti by allowing the current
document frequency df(ti) to vary within some predefined
range, before actually updating idf(ti). First, notice that
the effect of a small number of updates to a particular token
is insignificant due to the log factor in Equations (1) and (2).
In addition, the hope is to amortize the cost of propagating
changes of frequently updated tokens. We analyze the exact
loss in precision in Section 4.

Notice that the most severe cascading effects during up-
dates are caused by the most frequent tokens, i.e., the tokens
with large document frequency df(ti), and hence low inverse
document frequency idf(ti). The most frequent tokens are
obviously the ones that have highly populated inverted lists,
and hence the ones causing the biggest changes to the in-
verted index during updates. In expectation, these will also
be the tokens that will be updated more frequently. It is
hence critical to limit changes to these tokens as much as
possible. In our favor, notice that low idf tokens are actu-
ally the ones that contribute the least in similarity scores
S2(q, s), due to their small partial weights. Essentially, by
delaying update propagation to low idf tokens, we limit the
cost of updates significantly, and at the same time marginally
affect query answer precision.

4. ANALYSIS OF LOSS IN PRECISION
In this section we analyze the exact loss in precision from

delayed propagation theoretically. Let Np, dfp(ti), idfp(ti)
be the total number of strings, the document frequencies,
and the inverse document frequencies of tokens in U at the
time the inverted index is built or the last time updates
were propagated. Let N , df(ti) and idf(ti) be the current,
exact values of the same quantities. Given a fully updated
inverted index and a query q, let the exact similarity score
between q and any s ∈ D be S2(q, s). Assuming now delayed
propagation, let the approximate similarity score computed
using quantities ?p be S∼2 (q, s). Our goal is to precisely
quantify the relation between S2 and S∼2 .

To simplify our analysis assume that the total possible
divergence in the idf of ti, by considering the divergence in
both N and df(ti), is given by:

idfp(ti)

ρ
≤ idf(ti) ≤ ρ · idfp(ti), (6)

for some value ρ. We will analyze the loss of precision with
respect to ρ, and in doing so, we don’t have to worry about
actual changes in N or whether all idfs have been computed
using the same N value or not, as long as all idfs are within
the relaxation bounds. Notice that our analysis is indepen-
dent of the particular form of the idf Equations (1) and (2),
and will also hold for all other idf alternatives.

Consider query q and arbitrary string s ∈ D. Their cosine
similarity is equal to

S2(q, s) =

P
ti∈q∩s idf(ti)2qP

ti∈s idf(ti)2
qP

ti∈q idf(ti)2
.

Let x =
P

ti∈q∩s idf(ti)2 be the contribution of the tokens

common to both q and s to the score. Let y =
P

ti∈s\(q∩s) idf(ti)2

be the contribution of tokens in s that do not appear in q,
and z =

P
ti∈q\(q∩s) idf(ti)2 the contributions of tokens in

q that do not appear in s. Thus,

S2 = f(x, y, z) =
x√

x + y
√

x + z
. (7)

Notice that if q = s, then y = z = 0. Our derivation will be
based on the fact that function (7) is monotone increasing
in x, and monotone decreasing in y, z, for positive x, y, z. It
is easy to see that the latter holds. We prove the former.

Lemma 1. f(x, y, z) = x√
x+y

√
x+z

is monotone increasing

in x, for positive x, y, z.

Proof. Consider the function g(x, y, z) = 1/f(x, y, z)2.
f(x, y, z) is monotone increasing in x iff g(x, y, z) is mono-
tone decreasing.

g(x, y, z) =
(x + y)(x + z)

x2
= 1 +

y + z

x
+

yz

x2
.

Since 1/x and 1/x2 are monotone decreasing in x, g(x, y, z)
is monotone decreasing in x, hence f(x, y, z) is monotone
increasing in x.

Given the definition of x, y, z and relaxation factor ρ, it holds
that:

xp/ρ2 ≤ xc ≤ ρ2 · xp (8)

yp/ρ2 ≤ yc ≤ ρ2 · yp

zp/ρ2 ≤ zc ≤ ρ2 · zp,



where xp, yp, zp are with respect to propagated idfs, and
xc, yc, zc are the current, exact values of the same quantities.

We are given an inverted index built using idfs idfp(ti),
and a query q with threshold τ . We need to retrieve all
strings s ∈ D : S2(q, s) ≥ τ . What is a threshold τ ′ < τ
s.t. retrieving all s ∈ D : S∼2 (q, s) ≥ τ ′ guarantees no
false dismissals? Notice that for any s, given Lemma 1, the
current score S2(q, s) can be either larger or smaller than
S∼2 (q, s), depending on which tokens in x, y, z have been
affected. If ∃s : S∼2 (q, s) < S2(q, s), we need to introduce
threshold τ ′ < τ to avoid false dismissals. Hence:

τ ≤ S2 ≤
ρ2xpp

xp/ρ2 + yp/ρ2
p

xp/ρ2 + zp/ρ2
= ρ4S∼2 (9)

⇒ τ ′ = τ/ρ4.

Clearly this bound is very loose and may introduce a very
large number of false positives in practice, even for small
slack ρ.

We consider now a more involved analysis that shows that
given a relaxation factor ρ the actual loss in precision is a
much tighter function of ρ. We want to quantify the di-
vergence of S∼2 from S2, constrained on inequalities (8) and
S2(q, s) ≥ τ . The query can be formulated as a constraint
optimization problem. Minimize f(xp, yp, zp) constrained
upon:

f(xc, yc, zc) ≥ τ (10)

xc/ρ2 ≤ xp ≤ ρ2 · xc

yc/ρ2 ≤ yp ≤ ρ2 · yc

zc/ρ2 ≤ zp ≤ ρ2 · zc,

where inequalities (8) have been re-written after solving for
xp, yp, zp, instead of xc, yc, zc (the exact same inequalities
actually result in this case).

Theorem 2. τ ′ = τ
τ+ρ4(1−τ)

is the minimum value of

f(xp, yp, zp) that satisfies all of the constraints in (10).

Proof. First we show that f(x, y, z) is minimized for y =
z. Let v = (y − z)/2 and w = (y + z)/2. f(x, y, z) is
minimized, when g(x, y, z) = f2(x, y, z) is minimized (for
positive x, y, z):

g(x, y, z) =
x2

(x + w)2 − v2
.

g(x, y, z) is minimized when the denominator is maximized,
i.e., when v2 = 0 ⇒ y = z (given that y, z are independent
of each other and v, w are only a rotational transformation
of y, z).

Now, f(xp, yp, yp) is further minimized when xp is mini-
mized and yp (or zp) is maximized, according to Lemma 1.
Hence, f(xp, yp, zp) is minimized at:

f(xc/ρ2, ρ2yc, ρ
2yc) =

xc

xc + ρ4yc
. (11)

Consequently:

f(xc, yc, zc) ≥ τ ⇒ (12)
xc

xc + yc
≥ τ ⇒

yc ≤ xc
1− τ

τ
.

Substituting Equation (12) into (11) we get:

f(xc/ρ2, ρ2yc, ρ
2yc) ≥

xc

xc + xcρ4 1−τ
τ

(13)

=
τ

τ + ρ4(1− τ)
.

Thus:

τ ′ =
τ

τ + ρ4(1− τ)
, (14)

satisfies all constraints.

It is not hard to see that Equation (14) is always a tighter
bound than (9) for all values of τ and ρ. Hence it is ex-
pected to yield significantly fewer false positives in most
practical cases, while guaranteeing no false dismissals. To
see this, consider the following example. For ρ = 1.1 and
a query threshold τ = 0.9, we need to lower the thresh-
old to τ ′ = 0.86, according to Equation (14), to guarantee
no false dismissals; a very small decrease which in practice
is expected to yield a small number of false positives. In
contrast, by using the loose analysis and Equation (9), we
would have to reduce the threshold to τ ′ = 0.61 to achieve
the same guarantee; a significant threshold decrease.

4.1 Practical considerations
We discuss here some practical considerations with respect

to the lower bound presented in the previous section. No-
tice that our analysis assumed for simplicity the worst case
scenario, where all token idfs take either their smallest or
largest possible value. In practice, of course, the extreme
values might not have been reached for all tokens. Notice
that at query evaluation time we know the exact deviation of
every token’s propagated idf from its correct value. Clearly,
we can take this information into account to limit false pos-
itives even further. We propose the following. First, we
maintain the global maximum deviation σ ≤ ρ among all
token idfs in U . Then, at query time we compute the maxi-
mum deviation λ ≤ ρ among all token idfs in q. In deriving
a lower bound for threshold τ ′, we use λ as a relaxation fac-
tor for xp, zp (the tokens in q ∩ s and q \ (q ∩ s)), and σ for
yp (the tokens in s \ (q ∩ s)). This lower bound in practice
will be tighter than (14).

Finally, we discuss the practical meaning of relaxation fac-
tor ρ. Assuming modifications only (and hence a fixed value
N) the basic intuition is that by allowing the idfs to devi-
ate from their computed values by no more than factor ρ,
we are essentially allowing token dfs to increase or decrease
by a certain amount. A compound increase or decrease of
a token’s df will result in the need to propagate updates.
Nevertheless, for low idf tokens (with very large df values)
the probability of a compounded increase or decrease in the
order of several thousands, is very small. On the other hand,
for high idf tokens (with very small df values), the probabil-
ity of a compounded increase or decrease by a small number
is much higher. This works in our favor, since we would like
low idf tokens (which have very small contributions to sim-
ilarity scores) to be updated very infrequently, and high idf
tokens (which have a very important contribution to simi-
larity scores) to be updated more frequently.



5. UPDATE PROPAGATION ALGORITHM
We focus our attention to engineering issues related with

supporting update propagation. We have an inverted index
consisting of one inverted list per token in U , where every list
is stored on secondary storage. List entries 〈s, w(s, ti)〉 are
stored in decreasing order of partial weights w. To support
update propagation we will need to perform incremental up-
dates on the sorted lists. Hence, we store each list as a B-tree
sorted on w. At index construction time we choose slack ρ.

Assume that we buffer arriving updates and propagate
them in batches at regular time intervals (e.g., every 5 min-
utes). Let the updates be given in a relational table consist-
ing of: 1. The type of update (insertion, deletion, modifi-
cation); 2. The new data in case of insertions; 3. The old
data in case of deletions; 4. Both the old and new data in
case of modifications. We also build an idf table consisting
of: 1. A token t; 2. The propagated idf of the token idfp(t);
3. The current, exact frequency of the token df(t). Before
applying the batch update to the index, we load the idf table
in main memory. In practice, the total number of tokens |U|
for most datasets is fairly small. Hence, maintaining the idf
table in main memory is inexpensive.

In order to update the inverted lists efficiently we need
to localize updates to each list and execute them in batch,
taking advantage of data locality and buffering. We would
certainly like to take advantage of sequential I/Os if the B-
trees are clustered on disk, over thrashing multiple B-trees
one after the other. Notice that we are forced to process
updates in order of arrival to avoid conflicts (e.g., deletions
on data that has not been inserted yet). But, localizing up-
dates on a per list basis implies that we should not process
updates one-by-one or in order of arrival. To circumvent
this pitfall we use a journaling approach. We maintain a
journal of updates on a per list basis in main memory. We
process the updates in the update table in order of arrival,
and record the necessary modifications to the in memory
journals. We flush all changes to the corresponding B-trees
all at once in the end, after performing certain allowable
reorderings to improve performance. If any particular jour-
nal is becoming too large to fit in main memory, we flush
the changes to the corresponding B-tree and clear the jour-
nal. After all journals have been populated, we process each
journal in sequence, applying all the required changes to the
respective B-trees. Notice that the total memory required
to store the journals is linear to the size of the update table.

B-trees use the partial weight of an entry as the key. This
implies that first, in order to delete an entry, we have to
compute its original partial weight, and thus the length of
the respective string in order to locate the entry in the B-
tree. Furthermore, in order to modify an entry whose par-
tial weight (and hence its length) has changed, we need to
compute both the old and the new length of the respective
string. For that purpose, the update table has to contain
the old data for deletions and modifications. A modification
of a key in the B-tree essentially translates into a deletion
followed by an insertion.

While populating the journals we also maintain the main
memory idf table. If a token is inserted we increase its exact
document frequency by one. If it is deleted we decrease it
by one. Tokens with document frequency zero are removed
from the table. New tokens, that did not appear before, are
inserted in the table and their current exact idf is computed.
After the updates have been propagated to the B-trees we

Algorithm 5.1: Propagate(D, U)

Let hash table H containing token df, idfp

Let M ← ∅, Journals J, N
for each {op, s} ∈ U8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

if op is an insertion8>>>>>>>>>>>>><>>>>>>>>>>>>>:

N+ = 1
for each t ∈ s

do

8>>>>><>>>>>:

if t is a new token

do

8<:
Insert in H
df(t) = 1

idfp(t) = log2 (1 + N
df(t)

)

else df(t)+ = 1
Compute Lp

2(s)
for each t ∈ s : Add insertion 〈s, wp(s, t)〉 to J(t)

if op is a deletion8>>><>>>:
N− = 1
Compute Lp

2(s)
for each t ∈ s :

do


df(t)− = 1
Add deletion 〈s, wp(s, t)〉 to J(t)

Commit journals
for each t ∈ H8>><>>:

if df(t) = 0 : Remove t from H

if NOT idfp(t)/ρ ≤ log2 (1 + N
df(t)

) ≤ idfp(t)ρ

do


M ← t

idf(t) = log2 (1 + N
df(t)

)

for each t ∈M8>>><>>>:
for each s ∈ inverted list t

do

8<:Compute new L2(s)
for each t′ ∈ s \M
do

˘
Add modification 〈s, w(s, t′)〉 to J(t′)

Rebuild inverted list t
Commit journals

Figure 4: Update propagation algorithm.

need to assess whether any token idfs have deviated more
than the allowed slack ρ in any direction. We scan the idf
table and identify the corresponding tokens and compute
their idfs.

Assuming that multiple token idfs have changed, we need
to scan the B-trees corresponding to these tokens, and re-
trieve all strings contained therein (which requires at least
one random I/O per string id for retrieving the actual strings
from the database). Then, we compute the new lengths of
the strings, given the updated token idfs. Finally, first we
rebuild the B-trees corresponding to tokens whose idf has
changed, and also update all other B-trees that contain those
strings. Every time we process a string we store the string
id in a hash table and make sure that we do not process that
string again, if it is subsequently encountered in another B-
tree (this will be the case for strings that contain multiple
tokens whose idfs have changed). Pseudocode of the update
propagation algorithm is shown in Algorithm 5.1.

6. EXPERIMENTS
We implemented a full featured prototype to test our up-

date propagation framework with real datasets. The proto-
type is implemented in C++ and we used the open source
Oracle BerkeleyDB [19] as the underlying DBMS for the
B-tree indexes. For our experiments we used the publicly
available DBLP citation database [17], and the Business
Listing (BL) database from a major online website (Yellow-
Pages). All experiments were run on a two four core Intel(R)



(minutes) 2-grams 3-grams 4-grams
S1 S3 S1 S3 S1 S3

Process strings 0.98 0.98 1.21 1.23 1.56 1.53
Sort n-grams 1.58 4.96 6.51 5.61 63.7 6.58
Create B-trees 4.8 3 7.97 2.96 69.3 16.8
Total 7.36 8.94 15.7 9.81 134.6 24.91

Table 2: Construction cost for DBLP.

Xeon(R) CPU 2.66 GHz, with 16 GB of main memory. We
focused on a DBLP table containing associations between
author names and publication ids for books, articles and
proceedings. We downloaded daily snapshots over a 30 day
period (February 11th, 2008 to March 11th, 2008) and com-
puted diffs, which we then used to create update tables. The
original table contains 2460433 author/id pairs, 5712041 to-
tal words and 269281 distinct words. The average author
name size is 13 characters, and there are 2050 distinct 2-
grams, 23666 3-grams, and 161213 4-grams in the original
table. There were 33461 total updates produced within a
month (approximately 1000 updates per day). These con-
sisted of 32121 insertions and 1340 deletions. In reality, dele-
tions correspond to modifications of existing records, which
we represent as deletions followed by insertions for simplic-
ity; there were no actual deletions from the DBLP database.
We also run experiments using the BL database. New busi-
ness listings are added on a daily basis, hence every listing is
associated with an insertion timestamp. We select 15 million
entries as the dataset, and another 30 thousand entries as
insertions. The dataset contained approximately 52 million
words and 633 thousand distinct words. The average busi-
ness name length is 20 characters. There are 37524 distinct
3-grams.

6.1 Construction cost
First, we build the inverted index on the final DBLP and

BL tables (after incorporating all updates). There are three
strategies we can use to generate n-grams: S1. Selection sort
and subsequent bulk-loading of B-trees; S2. Direct insertion
into B-trees; S3. External sort and subsequent bulk-loading
of B-trees. We use 4096 byte page sizes for the B-trees in all
cases, and 2-grams, 3-grams, 4-grams for this experiment.
We use 300MB as an aggregate file buffer for S1, S2 and as
a main memory buffer for external sorting. We omit results
for S2 since it is not competitive. The time to run each step
of the building process is shown in Table 2 and Figure 5.
The construction cost increases super-linearly to the number
of n-grams (due to the sorting step), and the number of
n-grams increases for larger n, making construction more
expensive (from 40 million 3-grams to 42 million 4-grams,
and from 23K to 161K lists ). The most expensive step is the
creation of B-trees, but as the number of n-grams increases,
the cost of sorting n-grams approaches that of creating B-
trees. Notice the overwhelming cost of managing buffered
files for S1 (both for writing during sorting and for reading
during B-tree creation) versus the comparative times for S3.
From the construction cost of the BL dataset we can see that
for large datasets strategy S1 performs as well as S3 (for
this dataset the n-gram generation process for 15M strings
creates approximately 365 million 3-grams, versus the 40
million 3-grams for the DBLP table). Increasing the dataset
size even further will exacerbate the difference between S1
and S3, as the number of n-grams increases linearly but the
number of lists is almost constant.
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Figure 5: Construction cost for BL.

Next, we compare the construction cost of using L0 nor-
malization. L0 normalized lists require only one pass of the
data to compute idfs and lengths. Nevertheless, sorting the
n-grams and creating B-trees cannot be avoided. Given that
the string processing step is the most inexpensive (7 to 44
times cheaper than B-tree creation in practice) it is clear
that L0 normalization does not offer any significant advan-
tages in terms of index construction (it is only marginally
faster than L2 construction). At the same time it does not
offer the benefits of L2 normalization in terms of query effi-
ciency (see Section 2). We will also show in the next section
that L0 normalization is not significantly faster than the
proposed lazy update propagation for L2 normalization in
terms of incremental update cost.

Given that the cost of extracting the n-grams and creat-
ing B-trees increases super-linearly to the total number of
strings in the base table, it is clear that for tables with tens
of millions of entries, even for relatively short strings, the
cost of rebuilding the inverted index quickly becomes infea-
sible on a daily basis. It should be stressed here that we
could avoid building sorted inverted lists and hence having
to maintain B-trees, but that would result in slower query
execution times based on merging strategies that need to
exhaustively read lists. We pay the cost of slower update
times for faster query execution.

6.2 Update propagation cost
Next, we construct the inverted index on the original DBLP

table (before incorporating the updates), and measure the
cost of subsequently updating the index using our propaga-
tion framework. Our goal is to be able to apply the updates
in a semi-real-time fashion, where we buffer updates and
propagate in regular time intervals (e.g., every 5 minutes).
The hope is that propagating even the 1000 daily updates
will require significantly less time than 5 minutes. In the rest
we concentrate mostly on the DBLP data which is publicly
available, since results for the BL dataset followed similar
trends.

Figure 6 shows the time it takes to propagate a batch of
updates for various batch sizes using our algorithm. For this
experiment we use a relaxation factor of 3%. First, we report
the time it takes to parse one batch of updates, extract the
3-grams, retrieve their idfs and populate the journals with
the appropriate changes for each B-tree. Next, we report the
time it takes to commit these changes to the B-trees. Finally,
we report the time it takes to commit all changes related to
idfs that have exceed their relaxation bounds. The most
important observation here is that such changes are indeed
very small and affect only an extremely small fraction of
the strings. The bulk of the cost is incurred by the B-tree



0
2
4
6
8

10
12
14
16
18
20

10
00

10
00

0

10
00

00

10
00

10
00

0

10
00

00

10
00

10
00

0

10
00

00

2-grams 3-grams 4-grams

M
in

ut
es

Idf updates
Commit journals
Populate journals

Figure 6: Cost of propagating one batch of updates
for various batch sizes (DBLP; relaxation 3%).

Batch Size
Statistic 1000 10000 100000

# of update operations 539767 539767 539767
# of out of bounds idfs 95 88 83
# of affected ids 252 230 221
# of affected lists 2138 1715 1321
# idf related updates 4216 3744 3544

Table 3: Statistics of update propagation for various
batch sizes (DBLP; 3-grams; 3%).

operations, that cannot be avoided if we want the updates
to be reflected in the index immediately, irrespective of the
normalization used.

The cost of incremental updating using L0 normalization
consists of the first two steps (populating and committing
the journals, and hence is only marginally faster than our
relaxed propagation policy. In other words, we are able to
provide the full benefits of using L2 normalization, for a
small penalty in update cost. In particular, for the 1000
batch size there are a total of 34 batches. The average time
to propagate a single batch when using 3-grams is 1.37 min-
utes for L2 and 1.34 minutes for L0. Similarly, for a 10000
update batch it takes on average 3.97 minutes for L2 and
3.88 minutes for L0, and for the full 33461 updates 7.35
minutes for L2 and 7.03 minutes for L0. Clearly, we are
able to process more than 10000 updates on a per 5 minute
update window.

An indication of the cost of incremental updates is the to-
tal number of update operations incurred. Table 3 lists sev-
eral statistics (here we use relaxation 3% and 3-grams). We
list: 1. The total number of update operations solely from
executing insertions and deletions of strings; 2. The number
of idfs that fall out of bounds during the update operation;
3. The number of string ids contained in the respective in-
verted lists whose new lengths will have to be propagated; 4.
The number of lists that will be affected by this propagation
operation; 5. The total number of update operations due to
idf changes. The total number of list updates incurred from
idf propagation is two orders of magnitude smaller than the
total number of normal update operations. This verifies our
intuition that propagating updates for infrequent n-grams
only will have a very small impact in the overall cost. No-
tice that as the batch size increases the total number of idfs
that falls out of bounds decreases since insertions and dele-
tions average out in the end, before the updates need to be
propagated by committing the journals.

Figure 7 shows the effects of varying ρ on update perfor-
mance. We use 1000 updates per batch for this experiment.
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Figure 7: Cost of propagating updates for various
relaxation factors (DBLP; batch size 1000).
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Figure 8: Cost of propagating updates for various
dataset sizes (BL; relaxation 4%).

We can clearly see from this plot that even for tight relax-
ation factors the cost of propagating updates is insignificant
in contrast to the cost of the update itself. Nevertheless, we
can see that we are able to commit each 1000 batch within
3 minutes when using 2-grams, 3-grams, or 4-grams.

Figure 8 shows the results of a scale-up experiment using
the BL dataset. We create an initial index using 5, 10, and
15 million entries, and then apply the 30 thousand updates
in order to measure the update performance as a function
of the underlying index size. We use 3-grams and 4% relax-
ation. We observe that the cost of updating B-trees due to
idf changes is very small for large datasets, but significant as
the dataset size becomes smaller. This is due to the fact that
the 30 thousand updates become a significant percentage of
the total number of strings Nb as the dataset size decreases,
meaning that a larger percentage of token idfs is expected
to exceed the relaxation bounds. Notice also that the time
it takes to update the B-trees doubles with respect to the
DBLP dataset (probably due to the longer string lengths
of the updates performed). The most important observa-
tion though is that the cost of updating the B-trees remains
almost constant across all dataset sizes within BL. This in-
dicates that propagating updates scales extremely well with
respect to the size of the underlying index, which is expected
since that cost is directly proportional to the size of the up-
date table and not the size of the index (a small increase
of this cost is expected for larger datasets as the underlying
B-trees become larger and more expensive to maintain per
update operation, but only with a logarithmic factor that
depends on the fanout of the trees).

Finally, for completeness Figure 9 plots the update prop-
agation cost for the 5M BL data as a function of ρ, for the
10000 batch size. The cost of update propagation due to idf
changes decreases as the relaxation factor increases.
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query results (DBLP).

6.3 Query accuracy
A qualitative analysis of query results for a variety of nor-

malization techniques can be found in [5]. In this section we
evaluate the difference between L0 and L2 normalization in
terms of speed, as well as the loss in accuracy resulting from
our proposed lazy update propagation framework. We mea-
sure Recall, Precision and Average Relative Error (ARE) of
scores. Recall is measured as the percentage of true answers
retrieved by the lazy updated index, over the total number
of answers retrieved by a fully updated index. Given our
theoretical analysis, we expect 100% recall in all cases. Pre-
cision is measured as the number of true answers retrieved,
over the total answers retrieved. This is a measure of the
number of false positives returned. Finally, we also mea-
sure the average relative error in the scores computed by
the inverted index with lazy propagation, when compared
to a fully updated index. For this set of experiments we
randomly picked 100 strings out of the 32121 newly inserted
strings as queries. We report averages in the graphs.

Figure 10 plots the average time required to retrieve an-
swers for various thresholds and query lengths (for L0 we re-
trieve the top-k results that correspond to the answer given
by L2). We created 3 query sets containing 100 strings each,
all within the respective string length bounds. We can ob-
serve that indeed L2 normalized indexes are at least twice
as fast and up to one order of magnitude faster, in all cases.

Table 4 plots average recall, average precision and average
relative error as a function of ρ. For this experiment we use
a query threshold τ = 0.7, yielding an average of 22 true
answers per query. As expected our framework has 100%
recall. Clearly, using larger ρ in our experiments has no neg-
ative effect in terms of query accuracy. Notice the very small
number of false positives, even for 5% relaxation factor. Re-

ρ (%)
3% 4% 5%

Recall 1 1 1
Precision 0.901 0.901 0.901

ARE 3.4 · 10−5 3.4 · 10−5 3.4 · 10−5

Table 4: Accuracy as a function of relaxation factor
(DBLP).

τ
0.5 0.6 0.7 0.8

Recall 1 1 1 1
Precision 0.728 0.79 0.901 0.974

ARE 0.0002 0.0001 3.4 · 10−5 6.9 · 10−6

Table 5: Accuracy as a function of query threshold
(DBLP).

member that for 5% relaxation, the update propagation cost
was insignificant (refer to Figure 7). This experiment veri-
fies our intuition that propagating updates only for high idf
n-grams will keep errors very low, while enabling very fast
updates. Finally, it is important to note that the average
relative error in the scores computed is close to zero.

Finally, we present accuracy experiments as a function of
query threshold. For this set we used 5% relaxation. Table
5 shows the results. The number of false positives increases
as the query threshold decreases, first due to the larger ex-
act number of answers per query, second due to the smaller
reduced thresholds τ ′ given by Equation (14). For example,
for 5% relaxation and τ = 0.5, τ ′ = 0.47. Clearly, if we are
willing to tolerate the slightly increased propagation cost
for smaller ρ, query precision will improve even for smaller
thresholds. Still, 70% precision for such small thresholds
is remarkable given the small cost we incur to keep the in-
dex updated. In most practical scenarios, thresholds vary
between 0.8 – 1, in which case our framework yields above
90% precision.

7. RELATED WORK
String similarity operators based on a variety of similarity

measures have been proposed in [2, 3, 4, 6, 14, 21]. Efficient
indexes for these operators have been proposed in [2, 6, 12,
13, 21]. Most approaches build some form of inverted in-
dexes on the tokens contained in the dataset. Some indexes
are based on relational database technology (represented as
relational tables and expressed as SQL queries). Others are
specialized inverted lists stored on secondary storage. Due
to the global nature of the weights associated with entries in
length normalized indexes, updates are known to be expen-
sive for all existing approaches. There has been very little
work on incremental updates in this context. Previous work
assumes buffering of updates and full recomputation of the
indexes on regular time intervals.

Other approaches (e.g., Lucene [1]) choose to use simpler
length normalization techniques (i.e., L0) which makes in-
cremental updates easier and marginally faster to handle.
Nevertheless, the drawback is significantly slower list merg-
ing algorithms. Additionally, the unrestricted nature of sim-
ilarity scores when simple normalization methods are used,
limits the practicality of these measures in certain cases (it
is not clear what the best similarity threshold for a given
query should be, and the resulting scores cannot be intu-



itively compared). Generally speaking, previous approaches
concentrate mostly on information retrieval on large docu-
ments, ignoring special properties that are true for queries
on short strings.

The only work that has considered incremental update
propagation for length normalized indexes is [15]. That work
focused on TF/IDF cosine similarity and purely relational
based indexes (the inverted index is in the form of a rela-
tional table and queries are expressed using SQL). It concen-
trated on heuristics, without providing a rigorous analysis
of the loss in precision. The present work uses these ideas
as a foundation for the new framework, but also provides
strict lower bounds on the loss of precision. In addition,
the present work describes in detail a framework based on
highly efficient specialized inverted indexes stored on sec-
ondary storage, rather than using relational database tech-
nology. This is highly desirable for online applications where
fast query response time is instrumental, and immediately
reflecting the effect of updates in the system is essential.

8. CONCLUSION
We developed a framework for efficient incremental up-

dates on inverted indexes for approximate string matching.
We argued that L2 length normalization has very appealing
properties with respect to query evaluation efficiency and
answer quality, and showed that it is also amenable to in-
cremental update propagation with guarantees in the loss of
precision. We analyzed the loss theoretically, described en-
gineering issues in detail, and evaluated the efficiency of the
proposed framework experimentally on a real datasets using
a fully functional prototype. In the future we plan to inves-
tigate if probabilistic similarity measures are also amenable
to lazy update propagation with similar guarantees.
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