
Automatic Discovery of Attributes in Relational Databases

Meihui Zhang
National University of

Singapore
mhzhang@comp.nus.edu.sg

Marios Hadjieleftheriou
AT&T Labs - Research

marioh@research.att.com

Beng Chin Ooi
National University of

Singapore
ooibc@comp.nus.edu.sg

Cecilia M. Procopiuc
AT&T Labs - Research

magda@research.att.com

Divesh Srivastava
AT&T Labs - Research

divesh@research.att.com

ABSTRACT
In this work we design algorithms for clustering relational columns
into attributes, i.e., for identifying strong relationships between
columns based on the common properties and characteristics of
the values they contain. For example, identifying whether a cer-
tain set of columns refers to telephone numbers versus social se-
curity numbers, or names of customers versus names of nations.
Traditional relational database schema languages use very limited
primitive data types and simple foreign key constraints to express
relationships between columns. Object oriented schema languages
allow the definition of custom data types; still, certain relationships
between columns might be unknown at design time or they might
appear only in a particular database instance. Nevertheless, these
relationships are an invaluable tool for schema matching, and gen-
erally for better understanding and working with the data. Here, we
introduce data oriented solutions (we do not consider solutions that
assume the existence of any external knowledge) that use statistical
measures to identify strong relationships between the values of a
set of columns. Interpreting the database as a graph where nodes
correspond to database columns and edges correspond to column
relationships, we decompose the graph into connected components
and cluster sets of columns into attributes. To test the quality of our
solution, we also provide a comprehensive experimental evaluation
using real and synthetic datasets.

Categories and Subject Descriptors
H.m [Information Systems]: Miscellaneous
General Terms
Algorithms
Keywords
Attribute discovery, Schema matching

1. INTRODUCTION
Relational databases are described using a strict formal language

in the form of a relational schema. A relational schema specifies
various properties of tables and columns within tables, the most
important of which is the type of data contained in each column.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

There is a well defined set of possible primitive data types, ranging
from numerical values and strings, to sets and large binary objects.
The relational schema also allows one to define relationships be-
tween columns of different tables in the form of foreign key con-
straints. Even though the relational schema is a powerful descrip-
tion of the data, it has certain limitations in practice. In particular,
it cannot accurately describe relationships between columns in the
form of attributes, i.e., strongly connected sets of values that ap-
pear to have the same or similar meaning within the context of a
particular database instance.

For example, consider a database instance that contains columns
about telephone numbers and social security numbers. All such
columns can be declared using the same primitive data type (e.g.,
decimal), but in reality there is never a case where these two types
of columns need to be joined with each other: semantically, there
is no reason why these columns should belong to the same type.
Even though this fact might be known to users (or easy to deduce),
it is nowhere explicitly specified within the schema. As another
example, consider a database instance that contains a table of cus-
tomer names and defines two views, one with European and one
with Asian customers. Ostensibly, the customer name columns in
the European and Asian views will not have any (or very few) val-
ues in common. Nevertheless, all three customer name columns
belong to the same attribute. Moreover, suppose that there exists
a fourth column that contains nation names. Clearly, nation names
should not be classified in the same attribute as customer names
even though these columns contain the same types of values (i.e.,
strings). Differentiating between these fundamentally different at-
tributes can be an invaluable tool for data integration and schema
matching applications, and, generally speaking, for better under-
standing and working with the data.

Existing schema matching techniques for identifying relation-
ships between columns use simple statistics and string-based com-
parisons, e.g., prefix/suffix tests, edit distance, value ranges, min/max
similarity, and mutual information based on q-gram distributions
[11, 7, 8, 12, 13]. Other approaches use external information like
thesauri, standard schemas, and past mappings. Our work on dis-
covering attributes can be used as a valuable addition to all of the
above, for designing automated schema mapping tools.

It is important to note here that attribute relationships are not al-
ways known in advance to database designers, so it is not always
possible to encode them a priori (for example, by using constraints
or object oriented schema languages). Certain relationships might
hold solely for a particular database instance, others develop over
time as the structure of the database evolves, yet others are obvi-
ous in hindsight only. Furthermore, there exists a large number of
legacy databases (sometimes with sizes in the order of hundreds of
tables and thousands of columns) for which schema definitions or

folklore knowledge of column meanings might have been lost. To
make matters worse, in many practical situations users have access
only to a keyhole view of the database (due to access privileges). In
such cases users access the data through materialized views, with-
out any information about the underlying schema, or even about the
view definitions. In other words, as far as the user is concerned, all
schema information has been lost.

Our approach for discovering attributes is purely data oriented.
We do not examine solutions that depend on external knowledge
about the data. We compute various statistical measures between
all pairs of columns within the database, and derive positive and
negative relationships between certain pairs of columns. Viewing
the database instance as a graph where every column is a node and
every positive/negative relationship is an edge, we decompose the
graph into connected components. Then, we further decompose
each component into a set of attributes.

In particular, in order to discern the type of relationship between
any pair of columns, we use Earth Mover’s Distance to find the
similarity between the distributions of the values contained in the
columns. We introduce two types of connections, one based on
the overall distribution of values and one based on the intersec-
tion distribution (distribution with respect to the common values
only). Low distribution similarity strongly suggests no attribute
ties. High intersection distribution similarity suggests very strong
attribute ties. We also propose the notion of a witness column for
introducing relationships by indirect association (i.e., for columns
that have no values in common directly, but share a lot of values
with the witness column).

Our main contribution is to provide a robust, unsupervised solu-
tion that reports a clustering of columns into attributes. In addition,
we perform a comprehensive empirical study using real and syn-
thetic datasets to validate our solution, and show that it has very
high precision in practice.

Section 2 gives some necessary background and definitions. Sec-
tion 3 presents our solution. Section 4 discusses performance is-
sues. Section 5 presents a comprehensive experimental evaluation
of the proposed technique. Section 6 discusses related work. Fi-
nally, Section 7 concludes this paper.

2. DEFINITIONS AND BACKGROUND
Conventionally, in relational database terminology the term at-

tribute is a synonym for a column. In this work, we use the term
attribute to refer to a much stronger notion, based on the actual
meaning of the values contained in a column. Formally:

DEFINITION 1 (ATTRIBUTE). An attribute is a set of relational
columns, such that columns in the same attribute are semantically
equivalent to each other.

In other words, an attribute is a logical notion based on common
properties and characteristics of the values contained in the columns
comprising that attribute.

For example, Figure 1 shows an excerpt of the schema of the
TPC-H benchmark [16], which models a business environment and
contains information about products, suppliers, customers, orders,
etc. The figure shows three tables, CUSTOMER, NATION and OR-
DERS, and foreign-primary key relationships between some columns
of these tables. A customer is associated with six columns in this
example: CUSTKEY, NAME, ADDRESS, NATIONKEY, PHONE and
COMMENT. Since CUSTOMER.NATIONKEY is a foreign key of NA-
TION.NATIONKEY, the two NATIONKEY columns are by definition
semantically equal and hence they belong to the same attribute. The
same is true for ORDERS.CUSTKEY and CUSTOMER.CUSTKEY.
Another example appears in Figure 2 which shows a slightly more

CUSTOMER

NATIONKEY

NAME

REGIONKEY

COMMENT

NATION

ORDERKEY

CUSTKEY
ORDER-
PRIORITY
COMMENT

ORDERSCUSTKEY

NAME

ADDRESS

NATIONKEY

PHONE

COMMENT

Figure 1: Excerpt of the TPC-H schema.

CUSTOMER

NATIONKEY

NAME

REGIONKEY

COMMENT

NATION

ORDERKEY

CUSTKEY
ORDER-
PRIORITY
COMMENT

ORDERS

CUSTKEY

NAME

ADDRESS

NATIONKEY

ASIAN
CUSTOMER

PHONE

COMMENT

EUROPEAN
CUSTOMER

CUSTKEY

NAME

ADDRESS

NATIONKEY

PHONE

COMMENT

CUSTKEY

NAME

ADDRESS

NATIONKEY

PHONE

Materialized
Views

Attribues

COMMENT

CUSTOMER.CUSTKEY
ORDERS.CUSTKEY
ASIAN CUSTOMER.CUSTKEY
EUROPEAN CUSTOMER.CUSTKEY

CUSTOMER.NAME
ASIAN CUSTOMER.NAME
EUROPEAN CUSTOMER.NAME

CUSTOMER.ADDRESS
ASIAN CUSTOMER.ADDRESS
EUROPEAN CUSTOMER.ADDRESS

CUSTOMER.NATIONKEY
ORDERS.NATIONKEY
ASIAN CUSTOMER.NATIONKEY
EUROPEAN CUSTOMER.NATIONKEY

CUSTOMER.PHONE
ASIAN CUSTOMER.PHONE
EUROPEAN CUSTOMER.PHONE

CUSTOMER.COMMENT
ASIAN CUSTOMER.COMMENT
EUROPEAN CUSTOMER.COMMENT

Figure 2: Attributes in TPC-H example, which contains three
base tables and two materialized views of CUSTOMER table.

complex scenario that considers the existence of materialized views,
i.e., ASIAN CUSTOMER and EUROPEAN CUSTOMER created from
the CUSTOMER table based on NATIONKEY. The ideal clustering of
the six columns contained in the CUSTOMER table is shown on the
right side of the figure. Clearly, all columns from the three related
tables belong to the same attribute, even if there is no direct associ-
ation specified in the schema (e.g., in the form of primary/foreign
keys) and despite the fact that, probably, EUROPEAN CUSTOMER
and ASIAN CUSTOMER have no values in common.

We now formalize the problem of attribute discovery as follows:

DEFINITION 2 (ATTRIBUTE DISCOVERY). Given a collection
of relational tables, denoted T, let C be the set of all columns in T.
Attribute Discovery is the process of partitioning C into m clusters
A = {A1, A2, . . . , Am} such that each Ak = {Ck

1 , Ck
2 , . . . , Ck

nk
}

is an attribute with respect to the set of tables T.

According to Definition 1, two columns C and C′ are part of
the same attribute if and only if semantically they behave the same.
The semantics of two columns can be inferred by the type of rela-
tionship these columns have within a database instance. We define
the following relationship types:

1. A primary/foreign key;

2. Two foreign keys referring to the same primary key;

3. A column in a view and the corresponding column in the base
table;

4. Two columns in two views but from the same column in the
base table;

5. No explicit relationship but semantically equivalent (e.g., non-
key, customer name columns from different tables).

The first four relationship types are, by definition, indicators of
strong attribute ties. The fifth relationship type encompasses all

columns that are semantically equivalent where this information
cannot be inferred from the database schema, but only from the ac-
tual values contained in the columns. Only relationship type 1 has
been studied in the past. To the best of our knowledge no previ-
ous work has studied relationship types 2-5. Nevertheless, existing
work can easily be adapted to identify types 2-4. In what follows,
we list a set of existing techniques that can be used to identify pairs
of columns belonging to these relationship types. In each case, we
point out why they are insufficient for identifying all relationship
types - particularly type 5.

2.1 Name Similarity
It is natural to consider using the similarity of column names to

infer column semantics, since, to a certain extent, names reflect the
meaning of the values within a column. Indeed, previous work, es-
pecially in the area of schema matching, has applied this technique
to identify associations between columns [14]. However, this is not
always a robust solution for three reasons. First, a given database
might not use strict naming conventions. Second, columns with
no meaningful associations oftentimes have similar or even iden-
tical names. For instance, a column called NAME appears in both
the NATION and CUSTOMER tables of TPC-H, even though the two
columns refer to two semantically unrelated concepts. Third, two
semantically related columns may happen to have very different
names. For example, the columns in a view might have completely
different names from the source columns in the base table. This
happens when views are generated automatically, or when long,
representative column names have to be abbreviated due to length
constraints (e.g., the 30 characters limit in Oracle). Hence, simply
relying on column name similarity can lead to both false positives
and false negatives, for the purpose of discovering attributes.

2.2 Value Similarity
Another straightforward technique is to consider the similarity

of the data values contained in a set of columns. The Jaccard coef-
ficient J(C1, C2) = |C1∩C2|

|C1∪C2|
(or any other set similarity measure)

can be used for this purpose, which can be efficiently estimated in
practice [6]. However, this idea has its own drawbacks. For exam-
ple, in our TPC-H database instance, column CUSTOMER.CUSTKEY
contains values from 1 to 150,000, while column PART.PARTKEY
contains all integers from 1 to 200,000. The overlap of the val-
ues in these two columns is very high: their Jaccard coefficient is
0.75. Nevertheless, the columns are not semantically related. Con-
versely, two columns can have a strong semantic relationship but
no common values at all, e.g., EUROPEAN CUSTOMER and ASIAN
CUSTOMER. Of course, one could argue that in this case the two
columns belong to two different attributes. However, in our solu-
tion we would like to cluster these columns primarily as customer
names (as opposed to, for example, nation names) and, optionally,
also partition them into sub-attributes. In this case, using data value
similarity alone would lead to a false dismissal.

2.3 Distribution Similarity
Data distribution similarity has been used before for finding as-

sociations between columns, for example, using Earth Mover’s Dis-
tance (EMD) to discover meaningful primary/foreign key constraints
[17]. Earth Mover’s Distance is a measure of similarity between
two data distributions on an underlying metric space. In the con-
text of primary/foreign key relationships, it can be used based on
the observation that, for the majority of cases, the distinct values
in a foreign key column are selected at random from the values of
the primary key column, and hence have similar underlying dis-
tributions. (This might not always be true, for example, when the

0

0.001

0.002

0.003

0.004

0.005

0.006

CUSTOMER.ADDRESS ORDERS.COMMENT

Buckets

pd
f

(a)

0

0.001

0.002

0.003

0.004

0.005

0.006

CUSTOMER.CUSTKEY PART.PARTKEY

Buckets

pd
f

(b)
Figure 3: Data distribution histograms of two examples from
TPC-H.

foreign key column is produced in a way that some correlations are
preserved, as is the case with locations and telephone number pre-
fixes; a foreign key column containing telephone numbers from a
specific geographical region would result in a well defined range of
numbers and would not be random with respect to a primary key
column containing numbers from all regions.) Notice that in the
case of primary/foreign keys there is also an implicit containment
assumption, i.e., that the values in the foreign key are a subset (or
approximately a subset) of the values in the primary key.

Earth Mover’s Distance is defined as follows:

DEFINITION 3. Given probability density functions (pdfs) C and
C′ on an underlying metric space, let a unit amount of work be
equal to moving a unit of probability mass for a unit distance. Then,
EMD(C, C′) is equal to the minimum amount of work needed to
convert pdf C into pdf C′.

The smaller the EMD value between two distributions is, the more
similar these distributions are considered to be. In the context of
sets of values, EMD is defined as the minimum amount of work
needed to convert one set of values into another, where a unit of
work is defined according to the rank of the values in the sorted or-
der of the union of the two sets. For example, consider two sets of
strings. First, we take the union of strings, sort them lexicograph-
ically and assign to each string its rank in the lexicographic order.
Then, the amount of work needed to convert one string into another
is equal to the distance of their ranks. For numerical values the only
difference is that we sort the values in numeric instead of lexico-
graphic order. See [17] for more details. Notice that we consider
rank distributions for EMD computation purposes. Thus, the type
of sorting affects the ranks of values and hence the distributions.

Computing distribution similarity is a necessary step in our set-
ting, since we can use it to discover primary/foreign key constraints
(one of the core relationship types we are interested in). However,
it is not sufficient for our purposes. Consider for example the val-
ues in CUSTOMER.ADDRESS and ORDERS.COMMENT. If we sort
them in lexicographic order for the purpose of computing EMD,
they follow very similar distributions. The proportion of strings
from one column that fall within a given range of strings from the

other column in lexicographic order is very similar. To illustrate
this point, we plot the two distributions in Figure 3(a). The buck-
ets are constructed using an equi-depth histogram based on the
quantiles of column ORDERS.COMMENT. Then, we simply tally
the number of strings from column CUSTOMER.ADDRESS that fall
within each bucket. The plot clearly shows that the values in CUS-
TOMER.ADDRESS also follow a nearly uniform distribution across
buckets. Indeed, the EMD between the two columns is only 0.0004.
Still, computing distribution similarity does eliminate a large num-
ber of other column pairs: for example, the histograms for columns
CUSTOMER.CUSTKEY and PART.PARTKEY, whose EMD is 0.125,
are shown in Figure 3(b). We conclude that EMD values are a use-
ful but insufficient filter. The main reason why EMD works for dis-
covering primary/foreign key relationships, but not for discovering
attributes, is the fact that for primary/foreign keys a containment re-
lationship needs to hold: By definition, most, if not all, values from
the foreign key must belong to the primary key. Thus, we would
never consider ORDERS.COMMENT and CUSTOMER.ADDRESS as
a valid primary/foreign key candidate in the first place, since they
are not expected to have many strings in common. By contrast,
for columns belonging to the same attribute no containment rela-
tionship needs to hold (e.g., EUROPEAN CUSTOMER and ASIAN
CUSTOMER).

3. ATTRIBUTE DISCOVERY
It is clear that simply applying the aforementioned methods for

discovering attributes will not yield accurate results. In this section
we present a novel two-step approach. Intuitively, most of the time
columns that belong to the same attribute tend to contain values that
are drawn from the same underlying distribution. Conversely, if the
values of two columns have different distributions, they more likely
belong to different attributes. Therefore, here we advocate an algo-
rithm that uses data distribution similarity, based on EMD, for par-
titioning columns into distribution clusters. This first step is used
to separate columns into major categories, for example clusters that
contain strings and clusters that contain only numerical columns.
Furthermore, this step will also separate numerical columns with
widely differing distributions, based for example on the range of
values within the columns.

The use of EMD to create distribution clusters has some limi-
tations. First and foremost, as can be seen from the example in
Figure 3(a), not all the columns in one distribution cluster belong
to the same attribute, especially when it comes to columns con-
taining strings. String columns tend to have very similar distri-
butions irrespective of the attribute these strings are derived from
(e.g., addresses and comments). Second, using EMD might place
some columns that belong to the same attribute into different clus-
ters. This will happen for example if several views are defined on
a table containing regions and telephone numbers, and the views
select telephone numbers only from particular regions. Clearly, the
telephone numbers in each view will start with a particular pre-
fix. These correlations result in significantly different distribution
of values between columns of the same attribute, rendering distri-
bution based measures ineffective.

To solve the first problem, we use a subsequent, refinement phase
that relies on computing the similarity of the distribution based on
the intersection of two columns. We also use indirect associations
through witness columns for cases where two columns have no val-
ues in common. We leave the solution of the second problem as
future work, and identify this scenario as a limitation of our al-
gorithm. From our experience, columns that have been generated
based on indirect correlations do exist, but are rare in practice.

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20 25 30

CUSTOMER.CUSTKEY

26

0.007

Top-k

EM
D

0.087

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25 30

CUSTOMER.NATIONKEY

7

0.096

Top-k

EM
D 0.184

(b)
Figure 4: EMD plot of two examples in TPC-H.

3.1 Phase One: Computing Distribution Clus-
ters

Given a set of columns C, we form distribution clusters by com-
puting the EMD between all pairs of columns in C. Since EMD is
a symmetric measure, this step requires |C|(|C|−1)

2
EMD compu-

tations. Then, given all pairwise EMDs we need to decide how to
partition columns into clusters. The main idea here is to derive for
every column a set of neighboring columns with small EMD, such
that no two columns that intuitively belong to the same attribute
are ultimately split into separate clusters. For every column C,
we sort its EMD values to every other column in increasing order.
Now we have to choose a cutoff EMD threshold that will determine
the neighborhood NC of C. After all neighborhoods have been
determined, we will form a graph GD , where nodes correspond
to columns and undirected edges are created between a column C
and all other columns in NC . Finally, the distribution clusters are
formed by computing all connected components in GD .

In practice, a small EMD value is not only subjective, but also
attribute dependent. From our experience, different types of at-
tributes exhibit significantly different behavior in terms of the sim-
ilarity of the distribution of values across columns of that attribute,
even when they are of the same primitive data type. We illustrate
this with an example from TPC-H in Figure 4. For columns CUS-
TOMER.CUSTKEY and NATION.NATIONKEY, we sort their EMD
values to all other columns in the database in increasing order of
EMD, and plot the top-30 results. From careful, manual analysis
of the data, we have determined that the columns belonging to the
same attribute as CUSTKEY and NATIONKEY fall in the green re-
gion of the plots. We can clearly see that both the cutoff EMD value
and the value of k that bound the green regions in the plots, differ
significantly for these two attributes. For our purposes we would
like to be able to identify the EMD cutoff threshold for each col-
umn automatically (and not by choosing a global EMD threshold or
value k), and clearly this means that we have to resort to heuristics.

We observe an interesting property that holds for most columns,
in all test cases that we have examined. Given a column C and
all pairwise EMD values, it appears that there usually exists a big
gap in the magnitude of EMD values, in the sorted order. For ex-
ample, in both Figures 4(a) and 4(b) we observe a big gap in the
sorted EMD order, after the cutoff region (the dotted red lines in
the plots). Intuitively, the gap signifies a cutoff point below which
other columns seem to have similar distributions with C, and above
which columns seem to be completely unrelated to C (recall that
small EMD means similar and large EMD means different). This
is expected for most column types in realistic scenarios. For exam-
ple, numerical columns are more similar to each other than string
columns (hence, a big gap exists in the EMD values where numer-
ical columns end and string columns begin); even among numer-
ical columns, smaller gaps occur because of the different ranges
of values in the columns (e.g., salaries vs. zip codes). Conserva-
tively choosing this gap to be the cutoff EMD threshold that defines
the neighborhood NC guarantees that most false cluster splits are
avoided in practice (in other words we do not end up with too many
clusters). In addition, we can also use a conservative global EMD
cutoff threshold θ (a value large enough to signal that two distri-
butions are significantly different) to make sure that the opposite
problem does not occur either, i.e., we do not end up with too few
distribution clusters.

Algorithmically identifying the cutoff EMD threshold for a col-
umn C is straightforward. Let θ be the global threshold, and L(C)
be the sorted list of EMD values for C, i.e., L(C) contains all val-
ues e = EMD(C, C′), ∀C′ ∈ C, in increasing order. We truncate
L(C) to values smaller than θ and identify the largest difference
between two consecutive EMD values in the truncated list. The
pseudo code appears in Algorithm 1. In the algorithm we also add
θ in the list of EMD values to capture the special case were the
largest gap between two values happens to involve θ.

Algorithm 1 ComputeCutoffThreshold (L(C), θ)

1: L(C): list of EMD/column-name pairs (e, C′), e =
EMD(C, C′)

2: L = L ∪ (θ, ∅)
3: Sort L in increasing order of EMD values
4: φC = 0, i = 0, gap = 0
5: while L[i + 1] ≤ θ do
6: if gap < L[i + 1].e− L[i].e then
7: gap = L[i + 1].e− L[i].e
8: φC = L[i].e
9: i = i + 1

10: Return φC

Once the cutoff value φC for each column C has been computed
we can define the neighborhood of a column as follows:

DEFINITION 4 (NEIGHBORHOOD). The neighborhood NC of
column C consists of all columns C′ with EMD(C, C′) ≤ φC .

Then, we build the distribution graph, which is defined as follows:

DEFINITION 5 (DISTRIBUTION GRAPH). A Distribution Graph
GD = (VD, ED) is an undirected graph where each column C ∈
C corresponds to a node C ∈ VD , and an edge between nodes C
and C′ exists iff C ∈ NC′ ∨ C′ ∈ NC .

Alternatively, we can define the edges as C ∈ NC′ ∧ C′ ∈ NC ,
but our experimental evaluation shows that in practice this does not
affect precision.

The distribution clusters are obtained by computing the connected
components in the resulting distribution graph:

Algorithm 2 ComputeDistributionClusters (C, θ)
1: GD = ∅
2: A is a hash table of lists of EMD/column-name pairs (e, C)
3: for i← 1 to |C| do
4: for j ← i + 1 to |C| do
5: e = EMD(Ci, Cj)
6: A[Ci].insert(e, Cj)
7: A[Cj].insert(e, Ci)
8: GD.AddNode(Ci)
9: for i← 1 to |C| do

10: φCi = ComputeCutoffThreshold(A[Ci], θ)
11: for all Cj ∈ NCi do
12: GD.AddEdge(Ci, Cj)
13: Return connected components of GD

N.NATIONKEY

N.NAME

N.REGIONKEY
N.COMMENT

O.ORDERKEY

O.CUSTKEY

O.ORDER-
PRIORITYO.COMMENT

AC.CUSTKEY AC.NAME

AC.ADDRESS

AC.NATIONKEY AC.PHONE

AC.COMMENT

EC.CUSTKEY EC.NAME

EC.ADDRESS

EC.NATIONKEY EC.PHONE

EC.COMMENT

C.CUSTKEY C.NAME

C.ADDRESS

C.NATIONKEY C.PHONE

C.COMMENT

DC1

DC5

DC2 DC3

DC4

DC7

DC8

DC6

Figure 5: Distribution clusters of TPC-H example.

DEFINITION 6 (DISTRIBUTION CLUSTER).
Let Gi = (V i

D, Ei
D), V i

D ⊂ VD, Ei
D ⊂ ED, 1 ≤ i ≤ n be the set

of n connected components in distribution graph GD . The set of
columns corresponding to the nodes in V i

D determines distribution
cluster DCi.

The pseudo code for computing distribution clusters is shown in
Algorithm 2. We can compute the connected components of graph
GD (line 13 of Algorithm 2) using either depth-first or breadth-first
search.

Figure 5 shows the distribution clusters of the TPC-H example
in Figure 2, which contains three base tables and two material-
ized views (table names EUROPEAN CUSTOMER and ASIAN CUS-
TOMER are shortened to EC and AC). Using the distribution graph,
twenty six columns are partitioned into eight clusters. Columns
from distinctly different domains are immediately separated (e.g.,
numeric values and strings). The numeric columns with different
ranges of values are also correctly clustered (e.g., key columns like
CUSTKEY, NATIONKEY, ORDERKEY and REGIONKEY), as well
as columns that contain specially formatted values (e.g., PHONE
which contains numerals and dashes). However, distribution clus-
ters cannot always differentiate between different string columns
(e.g., ADDRESS and COMMENT).

3.2 Phase two: Computing Attributes
We now describe in detail how to further decompose distribu-

tion clusters into attributes, specifically for identifying columns that
have very similar distributions overall but do not belong to the same
attributes, as is the case for many string columns. We use an inter-
section distribution metric and witness columns, to construct one
attribute graph per distribution cluster and then correlation cluster-
ing to decompose the cluster into attributes.

3.2.1 The Attribute Graph
In order to decompose clusters into attributes we create one at-

tribute graph GA per cluster. Given that all columns within the
same distribution cluster have similar distributions of values, we
need to differentiate between attributes by also taking into account
the values these columns have in common. Clearly, columns with
large intersection of values are highly related and should belong
to the same attribute (this is similar to automatically identifying
whether two columns have a primary/foreign key relationship, as in
[17]). On the other hand, columns that have very few or no values
in common, might or might not belong to the same attribute (e.g.,
as is the case of EUROPEAN CUSTOMER and ASIAN CUSTOMER,
and conversely, ADDRESS and COMMENT).

We make here the following key observation. We can deter-
mine whether two columns with empty intersection come from the
same attribute by using a witness column, i.e., a third column that
is highly related to both columns. In other words, we introduce
relationships by indirect association. For example, we know for
a fact that both EUROPEAN CUSTOMER and ASIAN CUSTOMER
have a large number of values in common with CUSTOMER, but
not with each other. After identifying that CUSTOMER is related
with EUROPEAN CUSTOMER and ASIAN CUSTOMER, we can de-
duce with high confidence that EUROPEAN CUSTOMER and ASIAN
CUSTOMER are also related. Formally:

DEFINITION 7 (WITNESS COLUMN). Consider three distinct
columns C, C′, C′′. Column C′′ is a witness for C and C′ if and
only if both conditions hold:

1. C′′ and C are in the same attribute.

2. C′′ and C′ are in the same attribute.

Clearly, if two columns belong to the same attribute, have no val-
ues in common, and no witness column, then we will not be able
to identify these columns. This is one more limitation of our ap-
proach, but in practice, such cases might either be identifiable using
orthogonal techniques (e.g., column name similarity), or in other
cases might be hard to identify using any unsupervised solution.

Based on these observations, we create the attribute graph of
each cluster DC, similarly to the distribution graph of C. Here, a
node corresponds to a column of DC and an edge corresponds to
an intersection relationship between two columns.

We also have to define a measure over these edges, which we call
Intersection EMD. Intersection EMD measures the likelihood that
a pair of columns are part of the same attribute, taking into account
the distribution of the values within each column with respect to
the common values. In general, for an edge (C, C′), EMD(C, C∩
C′) 6= EMD(C′, C∩C′). Since the edge is undirected, we define
its weight as the arithmetic mean of these two values. Formally:

DEFINITION 8 (INTERSECTION EMD).
Given columns C, C′, the Intersection EMD is defined as:

EMD∩(C, C′) =
1

2
(EMD(C, C ∩C′)+ EMD(C′, C ∩C′)).

Let EMD∩(C, C′) =∞, if C ∩ C′ = ∅.

Clearly, Intersection EMD can differentiate between columns like
ADDRESS and COMMENT, since their intersection is empty. Even
if they did have a small number of values in common, their Inter-
section EMD would be very large.

Similar to the case of computing distribution clusters, we need to
decide whether the Intersection EMD between two clusters is small
enough to place the columns into the same attribute. We are trying

C.COMMENT

N.NAME

N.COMMENT

O.COMMENT

AC.ADDRESS

AC.COMMENT

EC.ADDRESS

C.ADDRESS

EC.COMMENT

+ edge

- edge

Figure 6: A possible attribute graph of distribution cluster
DC1.

to balance the number of attributes to create (small thresholds will
result in too many attributes and large thresholds in too few). For
each individual column, we compute a cutoff threshold as before
(see Algorithm 1), but instead of using EMD we use Intersection
EMD. Similarly, we define the neighborhood NC of a column C,
this time with respect to Intersection EMD.

We now give the formal definition of the attribute graph corre-
sponding to a distribution cluster:

DEFINITION 9 (ATTRIBUTE GRAPH).
The attribute graph GA = (VA, EA) of a distribution cluster DC
is a complete graph over the set of vertices of DC, such that the
weights of edges in EA are either 1 (positive edges) or −1 (nega-
tive edges). Let E+

A , E−
A denote the set of positive, resp. negative,

edges in GA. To define them, consider an arbitrary pair of vertices
C, C′ ∈ VA.

1. Neighborhood: If C ∈ NC′ ∨C′ ∈ NC , then eCC′ ∈ E+
A1.

2. Witness: If ∃C′′ ∈ VA s.t. eCC′′ ∈ E+
A1 ∧ eC′C′′ ∈ E+

A1,
then eCC′ ∈ E+

A2.

We define E+
A = E+

A1 ∪ E+
A2, and E−

A = EA \ E+
A .

Figure 6 shows the attribute graph of distribution cluster DC1

from Figure 5. The green lines in the figure denote positive edges
while the red lines are negative edges. The edges between the three
nodes outside the dashed box to all other nodes are negative. Using
Intersection EMD we are able to separate columns like ADDRESS
and COMMENT, while AC.ADDRESS and EC.ADDRESS are con-
nected through the witness column C.ADDRESS. The same holds
for AC.COMMENT and EC.COMMENT.

The next step is to decompose the graph into attributes. Clearly,
we could decompose the graph into connected components (by sim-
ply ignoring negative edges) similarly to phase one. Nevertheless,
due to the nature of Intersection EMD and the fact that after phase
one, attribute graphs consist of a small number of nodes, in prac-
tice attribute graphs tend to comprise of a single (or very few) con-
nected components. A better approach here is to use the negative
weights productively to find an optimal clustering of nodes into at-
tributes that minimizes the number of conflicting nodes that end
up into the same cluster and the number of related nodes that end
up in different clusters. As it turns out, this is exactly the goal of
correlation clustering.

3.2.2 Correlation Clustering
Let G = (V, E) be an undirected graph with edge weights 1 or
−1. Let E+ be the set of positive edges, and E− be the set of

negative edges; E = E+ ∪ E−. Intuitively, edge euv ∈ E+ if u
and v are similar; and euv ∈ E− if u and v are dissimilar. The
correlation clustering problem [3] on G is defined as follows:

DEFINITION 10 (CORRELATION CLUSTERING). Compute dis-
joint clusters covering V , such that the following cost function is
minimized:

cost = |{euv ∈ E+ | Cl(u) 6= Cl(v)}|+
|{euv ∈ E− | Cl(u) = Cl(v)}|,

where Cl(v) denotes the cluster node v is assigned to.

This definition minimizes the total number of disagreements, i.e.,
the number of positive edges whose endpoints are in different clus-
ters, plus the number of negative edges whose endpoints are in
the same cluster. Alternatively, one can define the dual problem
of maximizing the total agreement. More general versions of the
problem exist, e.g., when weights are arbitrary real values. How-
ever, this version is sufficient for our purposes.

Correlation clustering can be written as an integer program, as
follows. For any pair of vertices u and v, let Xuv = 0 if Cl(u) =
Cl(v), and 1 otherwise. The integer program is

Minimize: X
euv∈E+

Xuv +
X

euv∈E−

(1−Xuv)

s.t.

∀u, v, w : Xuw ≤ Xuv + Xvw

∀u, v : Xuv ∈ {0, 1}

The condition Xuw ≤ Xuv + Xvw ensures that the following
transitivity property is satisfied: if Xuv = 0 and Xvw = 0, then
Xuw = 0 (note that this is equivalent to: if Cl(u) = Cl(v) and
Cl(v) = Cl(w), then Cl(u) = Cl(w)). Therefore X defines
an equivalence relationship, and the clusters are its equivalence
classes. Correlation clustering is NP-Complete [3]. Nevertheless,
the above integer program can be solved exactly by IP solvers (e.g.,
CPLEX [10]) for sufficiently small graphs. For larger graphs, one
can use polynomial time approximation algorithms [2].

Going back to the example of Figure 6, correlation clustering
on this graph will further decompose nine columns into five at-
tributes, as shown in Figure 7. If all the edges in the attribute graph
are correctly labeled, such as the simple example in Figure 6, then
the graph results in perfect clustering, meaning that there are no
disagreements. (When this is the case, simply removing all the
negative edges and computing the connected components in the re-
maining graph also returns the correct attributes.) However, if a
few edges are assigned conflicting labels, there is no perfect clus-
tering. For example, Figure 8 shows a different attribute graph for
distribution cluster DC1, obtained by setting a higher threshold θ in
Algorithm 1. The edge between AC.ADDRESS and AC.COMMENT
is now labeled positive. In addition, two other positive edges are
created, since AC.ADDRESS and AC.COMMENT act as witnesses
for C.ADDRESS and C.COMMENT. As it turns out, in this case cor-
relation clustering is still able to separate the columns correctly, by
finding a partition that agrees as much as possible with the edge
labels. Of course, in some cases correlation clustering will result in
mistakes, but in the end our solution will decompose the graph into
attributes that can be manually inspected much more easily than
having to look at the complete distribution graph.

We now summarize phase two. The pseudo code is shown in
Algorithm 3. For each distribution cluster computed in phase one,
compute the Intersection EMD between each pair of columns in the

N.NAME

N.COMMENT

O.COMMENT

AC.ADDRESS AC.COMMENT

EC.ADDRESS EC.COMMENT

C.ADDRESS C.COMMENT

A1 A2

A3

A4

A5

Figure 7: Attributes discovered in the attribute graph of distri-
bution cluster DC1.

C.COMMENT

N.NAME

N.COMMENT

O.COMMENT

AC.ADDRESS

AC.COMMENT

EC.ADDRESS

C.ADDRESS

EC.COMMENT

+ edge

- edge

Figure 8: Another possible attribute graph of distribution clus-
ter DC1.

cluster and store the resulting values in a hash table I in increas-
ing order of Intersection EMD. Then compute the cutoff threshold
for each column. Construct the attribute graph GA according to
Definition 9. Creating positive edges based on witness columns is
implemented by creating positive edges between nodes with path
of length two. This is accomplished by first computing the adja-
cency matrix E of graph GA1 = (VA, E+

A1), where E[Ci][Cj] = 1
means the edge between node Ci and Cj is positive. The adjacency
matrix of graph GA = (VA, E+

A2) can be computed by multiply-
ing E by itself. The sum of the two matrices is the final adjacency
matrix M of attribute graph GA = (VA, EA). Finally, we compute
attributes using correlation clustering on graph GA.

Algorithm 3 ComputeAttributes (DC, θ)
1: GA = ∅, E[][] = 0, M [][] = 0
2: I is a hash table of lists of Intersection-EMD/column-name

pairs (e, C)
3: for i← 1 to |DC| do
4: for j ← i + 1 to |DC| do
5: e = EMD∩(Ci, Cj)
6: I[Ci].insert(e, Cj)
7: I[Cj].insert(e, Ci)
8: φCi = ComputeCutoffThreshold(I[Ci], θ)
9: for all Cj ∈ NCi do

10: E[Ci][Cj] = 1
11: GA.AddNode(Ci)
12: M = E + E × E
13: for i← 1 to |DC| do
14: for j ← 1 to |DC| do
15: if M [i][j] == 0 then
16: GA.AddNegativeEdge(Ci, Cj)
17: else
18: GA.AddPositiveEdge(Ci, Cj)
19: Return correlation clustering of GA

4. PERFORMANCE CONSIDERATIONS
Clearly, due to the difficult and subjective nature of this problem,

no unsupervised solution will lead to 100% precision 100% of the
time. The solution provided here can be used in conjunction with
other techniques for improving quality. Notice that the two phases
of our algorithm are quite similar. We create a graph based on some
similarity measure and decompose the graph based on connected
components or correlation clustering. The heuristic nature of the
algorithm raises a number of questions about possible alternative
strategies. For example, we could reverse the two steps, or use
Intersection EMD instead of EMD first. We can also use correlation
clustering in the first phase of the algorithm.

We use EMD first simply because it is a weaker notion of sim-
ilarity than Intersection EMD. EMD acts upon all values of two
columns, while Intersection EMD acts upon the common values.
EMD is used to roughly decompose the instance graph into smaller
problems, by separating columns that clearly belong to different
attributes; strings from numerical columns and columns with sig-
nificantly different ranges and distributions of values. The graph
based on EMD edges alone (without any Intersection EMD edges)
is sparse and easy to partition into smaller instances. Of course, we
could combine both phases into one by creating a graph with EMD,
Intersection EMD and witness edges, but we use a two phase ap-
proach here for efficiency. For the same reason we do not use cor-
relation clustering in the first phase. Running correlation clustering
on the distribution graph GD can be very expensive due to the large
number of nodes. On the other hand, running correlation cluster-
ing independently on the much smaller connected components is
manageable.

Notice that the cost of computing EMD and Intersection EMD
depends on the size of the columns involved. Clearly, for columns
containing a very large number of distinct values the cost of com-
puting all pairwise EMD and Intersection EMD values can be pro-
hibitive.

For that reason we can approximate both measures by using a
technique introduced in [17], which is based on quantiles. Essen-
tially the technique computes a fixed number of quantiles from all
columns (e.g., 256 quantiles) and then computes EMD between two
columns by using the quantile histograms. In particular, given two
columns C and C′, EMD(C, C′) is computed by taking the quan-
tile histogram of C and performing a linear scan of C′ to find the
number of values in C′ falling into each bucket of the histogram of
C (notice that we cannot compute EMD between two quantile his-
tograms directly, since the bucket boundaries might not coincide,
in which case EMD is undefined). Then EMD(C, C′) is approx-
imated as the EMD between the two resulting histograms. The in-
tuition here is that quantile summaries are a good approximation of
the distribution of values in the first place, hence the EMD between
two quantile summaries is a good approximation of the EMD be-
tween the actual columns. Moreover, this approach has a proven
bounded error of approximation, as shown in [17].

Computing Intersection EMD entails computing the intersection
between all pairs of columns, which of course is a very expensive
operation, especially if no index exists on either column. In order to
improve performance we build Bloom filters [4] and use the Bloom
filters to compute an approximate intersection between sets. Given
two columns C and C′, we first perform a linear scan of column
C, probe the Bloom filter of C′, and if the answer is positive, use
the existing quantile histograms of C and C′ to (approximately)
compute both EMD(C, C ∩ C′) and EMD(C′, C ∩ C′). Op-
tionally, we can improve the approximation of the intersection by
also scanning column C′ and probing the Bloom filter of C. Given
that Bloom filters introduce false positives, this approach can result

in cases where two columns have an empty intersection, but their
approximate Intersection EMD is finite. Nevertheless, for columns
of very large cardinality (especially in the absence of indexes), us-
ing Bloom filters results in significant performance improvement.
One can further balance accuracy and performance, by using exact
intersection computations for small columns, and Bloom filters for
large columns.

As discussed above, correlation clustering is NP-Complete. Nev-
ertheless, we solve it exactly, by running CPLEX [10] on its cor-
responding integer program. In our experiments, CPLEX was able
to find solutions for large graph instances very fast. The largest
graph instance we tried contained 170 nodes, 14365 variables, and
2.5 million constraints and took 62 seconds to complete using four
Intel IA-64 1.5GHz CPUs and four threads. Alternatively, one can
use polynomial time approximation algorithms [2] if faster solu-
tions are required for larger graphs.

5. EXPERIMENTS
We conducted extensive experiments to evaluate our approach on

three datasets based on the TPC-H1 benchmark (with scale factor
1), and the IMDb2 and DBLP3 databases. For each dataset, we cre-
ated a large set of materialized views to simulate a more complex
scenario. The detailed statistics of all datasets are given in Table 1.
The views are created from a selection of rows based on the values
of a specific column (mostly columns that contain categorical data)
and each of the views represents a semantically meaningful subset
of the data in the base table. Table 2 summarizes the views gener-
ated in each dataset. The experiments were run on an Intel Core2
Duo 2.33 GHz CPU Windows XP box and CPLEX was run on a
four Intel IA-64 1.5GHz CPU Linux box.

Base tables Views Columns Rows
TPC-H 8 110 785 12,680,058
IMDb 9 118 254 12,048,155
DBLP 6 66 285 8,647,713

Table 1: Datasets statistics.
We use two standard metrics, precision and recall, to measure

the quality of discovered attributes. The gold standard was manu-
ally identified from a careful analysis of each dataset. Given the
nature of the problem, we define precision as a measure of pu-
rity of a discovered attribute (how similar is the set of columns
contained in the attribute with respect to the gold standard), and
recall as a measure of completeness. Let the set of discovered
attributes be A = {A1, A2, . . . , Am} and the gold standard be
T = {T1, T2, . . . , Tm′}. We first define the precision and recall
of a discovered attribute Ai. Each column in Ai belongs to an at-
tribute in T. Let Ai correspond to Tj if and only if the majority of
columns in Ai also belong in Tj . Then, the precision and recall of
Ai are defined as:

Precision(Ai) =
|Ai ∩ Tj |
|Ai|

, Recall(Ai) =
|Ai ∩ Tj |
|Tj |

.

We then define the precision and recall of the final result A as the
average over all attributes:

Precision(A) =

Pm
i=1 Precision(Ai)

m
,

Recall(A) =

Pm
i=1 Recall(Ai)

m
.

1http://www.tpc.org/tpch
2http://www.imdb.com/interfaces
3http://dblp.uni-trier.de/xml/

Dataset Base Table View No. Selection Description

TPC-H

CUSTOMER
1-2 ACCTBAL Customers with positive/negative account balance.
3-7 MKTSEGMENT Customers in each market segment.

8-37 NATIONKEY Customers from each nation/region.
NATION 38-42 REGIONKEY Nations in each region.

PART
43-67 BRAND Parts of each brand.
68-72 MFGR Parts by each manufacture.

SUPPLIER 73-102 NATIONKEY Suppliers from each nation/region.

ORDERS
103-105 ORDERSTATUS Orders in each status.
106-110 ORDERPRIORITY Orders with each priority.

IMDb MOVIE
1-28 COUNTRY Movies released in each country.

29-118 YEAR Movies released in each year.

DBLP
ARTICLES 1-20 YEAR Journal papers published in each year.
INPROCEEDINGS 21-38 YEAR Conference papers published in each year.
BOOKS 39-66 YEAR Books published in each year.

Table 2: Description of materialized views.

5.1 Distribution Similarity
As already discussed, in most cases columns that belong to the

same attribute tend to have similar distributions, and columns that
have different distributions more likely belong to different attributes.
First, we run experiments to verify this intuition. For each dataset,
we examine the EMD values between all pairs of columns in the
same attribute, based on the gold standard, and plot the distribution
histograms (for efficiency we approximate all EMD computations
using quantile histograms). Figure 9 shows the results for TPC-H
and DBLP. For TPC-H 87.3% EMD values between columns of the
same attribute are smaller than 0.05. For DBLP 62.5% are below
0.05 and only 2.8% are above 0.2. This verifies our intuition that
EMD is a robust measure for phase one of the algorithm.

Notice that a few pairs of columns in TPC-H have very large
EMD. This is caused by the four attributes shown in Table 3. View1
and View2 select customers with positive and negative balance (see
Table 2), which results in a horizontal partition of the base table
and very different distributions in each partition. The same hap-
pens for attributes phone number and order date. Since View8-
37 and View73-102 select customers and suppliers from a particu-
lar nation/region, the phone numbers in each view start with the
same prefixes. View103-105 are the orders in each particular status
and order status is correlated to the date when the order is placed.
Distribution similarity fails to discover the associations between
columns if such correlations exist, and this is a limitation of our
approach. However, we can see here that distribution similarity be-
tween columns of the same attribute holds for the large majority
of columns. After removing the horizontal partitions mentioned
above from TPC-H (65 columns in total), the EMD values between
all pairs of columns within the same attribute are below 0.2 and for
up to 99.5% of the pairs, EMD is below 0.05.

Attribute Columns
Customer account balance ACCTBAL in CUSTOMER and View1-2
Customer phone number PHONE in CUSTOMER and View8-37
Supplier phone number PHONE in SUPPLIER and View73-102
Order date DATE in ORDERS and View103-105

Table 3: Attributes that contain horizontally partitioned
columns in TPC-H.

To illustrate the point that columns of the same attribute do not
necessarily have too many values in common, in Figure 10 we plot
a histogram of the pairwise Jaccard similarity of columns within
the same attribute, based on the golden standard. Recall that a high

 0%

 20%

 40%

 60%

 80%

 100%

0.
45

−
0.

5

0.
4−

0.
45

0.
35

−
0.

4

0.
3−

0.
35

0.
25

−
0.

3

0.
2−

0.
25

0.
15

−
0.

2

0.
1−

0.
15

0.
05

−
0.

1

0−
0.

05

P
er

ce
nt

ag
e

of
 c

ol
um

n
pa

irs

EMD

(a) TPC-H

 0%

 20%

 40%

 60%

 80%

 100%

0.
45

−
0.

5

0.
4−

0.
45

0.
35

−
0.

4

0.
3−

0.
35

0.
25

−
0.

3

0.
2−

0.
25

0.
15

−
0.

2

0.
1−

0.
15

0.
05

−
0.

1

0−
0.

05

P
er

ce
nt

ag
e

of
 c

ol
um

n
pa

irs

EMD

(b) DBLP

Figure 9: Distribution histograms of EMD values between all
pairs of columns in the same attribute for TPC-H and DBLP.

 0%

 20%

 40%

 60%

 80%

 100%

0−
0.

1

0.
1−

0.
2

0.
2−

0.
3

0.
3−

0.
4

0.
4−

0.
5

0.
5−

0.
6

0.
6−

0.
7

0.
7−

0.
8

0.
8−

0.
9

0.
9−

1

P
er

ce
nt

ag
e

of
 c

ol
um

n
pa

irs

Jaccard

(a) TPC-H

 0%

 20%

 40%

 60%

 80%

 100%

0−
0.

1

0.
1−

0.
2

0.
2−

0.
3

0.
3−

0.
4

0.
4−

0.
5

0.
5−

0.
6

0.
6−

0.
7

0.
7−

0.
8

0.
8−

0.
9

0.
9−

1

P
er

ce
nt

ag
e

of
 c

ol
um

n
pa

irs

Jaccard

(b) DBLP

Figure 10: Distribution histograms of Jaccard values between
all pairs of columns in the same attribute for TPC-H and DBLP.

Jaccard value implies a large number of common values and vice
versa. We observe that for TPC-H 70% of column pairs have Jac-
card similarity smaller than 0.1, and only 19% have Jaccard above
0.9. The results for DBLP are even more striking, with more than
80% of column pairs having Jaccard similarity smaller than 0.1.
It is thus clear that Jaccard similarity is a poor measure for clus-
tering columns into attributes. In particular, a naive approach for
discovering attributes would be to create a column similarity graph
with edges weighted according to pairwise Jaccard similarity, then
remove edges with Jaccard similarity smaller than some threshold,
and finally compute the connected components. Figure 10 clearly
shows that dropping edges with reasonably small Jaccard similarity
would result in a very sparse graph, separating columns into atomic
attributes. On the other hand, retaining all edges would tend to sep-
arate columns into two attributes, one for numerical attributes and
one for strings.

1

0.8

0.6

0.4

0.2

0
0.20.180.160.140.120.1

Threshold θ

Precision
Recall

(a) TPCH-1

1

0.8

0.6

0.4

0.2

0
0.20.180.160.140.120.1

Threshold θ

Precision
Recall

(b) TPCH-2

1

0.8

0.6

0.4

0.2

0
0.20.180.160.140.120.1

Threshold θ

Precision
Recall

(c) IMDb

1

0.8

0.6

0.4

0.2

0
0.20.180.160.140.120.1

Threshold θ

Precision
Recall

(d) DBLP

Figure 11: Accuracy results on TPC-H, IMDb and DBLP for
varying thresholds θ.

5.2 Attribute Discovery
Here we measure the accuracy of our technique for discovering

attributes. We use a single global threshold θ for computing the dis-
tribution clusters in Phase one as well as building the attribute graph
in Phase two. Furthermore, we use Bloom filter for all columns,
across the board, to approximate Intersection EMD. In the experi-
ments, we vary θ from 0.1 to 0.2. Table 4 shows the accuracy results
for all datasets. For TPC-H, we report two sets of results. TPCH-1
refers to the results with respect to the original dataset. TPCH-2
refers to the results with respect to a reduced dataset, obtained by
removing the horizontally partitioned columns. For readability, we
also plot the precision and recall in Figure 11. We can see that for
large ranges of thresholds θ (0.16-0.2) we achieve high precision
and recall for all datasets, which makes our approach easy to use in
practice.

Threshold θ 0.1 0.12 0.14 0.16 0.18 0.2

TPCH-1

m′ 46
m 108 107 106 103 102 101
P 0.986 0.985 0.984 0.984 0.983 0.983
R 0.379 0.383 0.377 0.388 0.382 0.385

TPCH-2

m′ 45
m 41 40 39 39 38 38
P 0.962 0.961 0.957 0.957 0.953 0.953
R 0.976 1 1 1 0.999 0.998

IMDb

m′ 10
m 12 11 11 10 10 10
P 0.958 0.955 0.955 0.95 0.95 0.95
R 0.75 0.818 0.818 0.9 0.9 0.9

DBLP

m′ 14
m 19 14 13 12 12 12
P 0.949 0.93 0.924 0.918 0.918 0.918
R 0.632 0.857 0.92 0.997 0.997 0.997

Table 4: Accuracy results on TPC-H, IMDb and DBLP for dif-
ferent thresholds θ; m′ true number of attributes; m attributes
in our solution; P is precision; R is recall.

For the TPC-H dataset, as already explained, 65 columns (be-
longing to only 4 attributes out of 45) are from horizontal partitions
of the base tables due to indirect correlations between columns.
Here, distribution similarity fails to cluster such columns together,
more precisely each view becomes its own cluster, resulting in

more than 100 attributes overall. However, as shown in TPCH-2,
by drilling down we can see that our approach achieves high pre-
cision and recall for discovering attributes in the remaining set of
columns. It should be noted here that columns that form unit clus-
ters can be singled out and treated separately during post-processing.
For future work, we are investigating whether it is possible to iden-
tify if unit clusters belonging to horizontally partitioned columns
can be concatenated as a subsequent step.

Our approach discovers fewer attributes than the gold standard.
Table 5 shows the attributes that cause the errors for θ = 0.12.
As shown, nine distinct attributes are clustered into four attributes
by our algorithm (one attribute per row), and that accounts for the
five missing attributes. Here, 9997 out of 10000 values in SUP-
PLIER.ADDRESS are identical to the values in CUSTOMER.ADDRESS
(due to the way addresses are generated in TPC-H), making these
two columns indistinguishable; DISCOUNT contains all values in
TAX; the same is true for SUPPKEY and AVAILQTY; 12.8% of val-
ues in SUPPLIER.ACCTBAL appear in CUSTOMER.ACCTBAL. Fi-
nally, LINEITEM.COMMENT has no intersection with ADDRESS,
but the false clustering here occurs due to false positives produced
by the Bloom filter in phase two.

Correlation clustering proves to be a robust way of separating
attributes in the attribute graph. Figure 12 shows an attribute sub-
graph of TPC-H, for varying θ from 0.14 to 0.2 (negative edges
are removed for readability). For θ = 0.14, the four clusters are
totally disconnected (there are no positive edges between differ-
ent attributes). Correlation clustering (or even connected compo-
nents) in this case would separate the graph into four attributes.
Our method is able to separate CUSTOMER.COMMENT views from
PART.COMMENT views, while, for example, the method of com-
paring column names will fail in this case. On the other hand,
CUSTOMER.ADDRESS and SUPPLIER.ADDRESS are clustered to-
gether, but this is clearly because 9997 out of 10000 addresses are
the same. As θ increases, the number of positive edges across at-
tributes increases as well. This is evident in Figure 12(d). However,
after running correlation clustering we are still able to separate the
graph into four attributes once again, with very few errors. For
θ = 0.16, the result is exactly the same as for θ = 0.14. For
θ = 0.18, correlation clustering will place one view of PART.NAME
in the attribute of CUSTOMER.COMMENT. For θ = 0.2, one view
of PART.COMMENT will be placed in the attribute for ADDRESS.

For IMDb we achieve 0.95 precision and 0.9 recall for θ rang-
ing from 0.16 to 0.2. In our result, ACTOR.NAME and DIREC-
TOR.NAME are clustered together due to very large overlap of val-
ues. Since most directors are also actors, in this case choosing
whether directors and actors should be treated differently depends
on application context. In this case of course, a simple solution
based on column names can provide an answer. Another problem is
column MEXICO.MOVIENAME which is not included in the movie
names attribute. Some simple data analysis here shows that 14.0%
of movie names in MEXICO.MOVIENAME start with la/las/los and
11.5% names start with el, making the distribution of this column
significantly different from movie names in other views. Decreas-
ing θ to 0.14 and 0.12 results in splitting SPAIN.MOVIENAME out
as well, for the same reason. When using threshold θ = 0.1,
HONGKONG.MOVIENAME and TAIWAN.MOVIENAME are also sep-
arated. This is not surprising, since both mainly contain names
in Chinese and have small overlap with the movie names in other
views.

Finally, for the DBLP dataset we also achieve precision above
0.9 and recall above 0.997, for θ ranging from 0.16 to 0.2. The
errors occur in four attributes. Here, AUTHOR.NAME and EDI-
TOR.NAME are clustered together given that 596 out of 621 editors

1 DISCOUNT TAX
2 SUPPKEY AVAILQTY
3 CUSTOMER.ACCTBAL SUPPLIER.ACCTBAL
4 CUSTOMER.ADDRESS SUPPLIER.ADDRESS LINEITEM.COMMENT

Table 5: Attributes that are incorrectly clustered together in TPC-H for θ = 0.12.

(a) θ = 0.14 (b) θ = 0.16

(c) θ = 0.18 (d) θ = 0.2

Figure 12: An attribute sub-graph of TPC-H for varying thresholds θ.

appear in the AUTHOR table as well. The same is true for ARTI-
CLES.TITLE and INPROCEEDINGS.TITLE, since it seems that the
majority of papers submitted to journal publications have the exact
same title as the conference versions of the papers.

Overall, clearly it is in some cases difficult even for humans to
decide what constitutes an attribute, without additional application
dependent context. Our technique is able to separate major at-
tributes very well, and make only minor mistakes that can either be
corrected by supervision and simple statistical analysis, or by using
orthogonal approaches (e.g., column name matching, if meaningful
schema information exists).

6. RELATED WORK
The work of Zhang et al. [17] was the main impetus behind our

approach, since they introduced the usage of EMD for correlating
columns based on the distribution of their values. Zhang et al. in-
troduced the quantile approximation of EMD that we also use here
and laid the foundation of using EMD to express primary/foreign
key relationships that are one of our main relationship types. Nev-
ertheless, here we extend this work by building distribution and
attribute graphs based on EMD and Intersection EMD, which is a
novel statistical measure of the relationship between two columns.

In the context of relational databases there has been little work
that concentrates on classifying columns into attributes. The only
previous work that we are aware of is by Ahmadi et al. [1], that
utilizes q-gram based signatures to capture column type informa-
tion based on formatting characteristics of data values (for exam-
ple the presence of ‘@’ in email addresses). The technique builds
signatures based on the most popular q-grams within each col-
umn and clusters columns according to basic data types, like email
addresses, telephone numbers, etc. In that respect, the goal of
this work is orthogonal to ours: It tries to categorize columns into
generic data types. Our work takes into account the distribution of
values, the distribution with respect to common values, and indi-
rect associations through witnesses, as opposed to only using the
distribution of q-grams.

Related work from the field of schema matching has concen-
trated on three major themes. The first is semantic schema match-
ing that uses information provided only by the schema and not from
particular data instances. The second is syntactic schema matching
that uses the actual data instances. The third uses external infor-
mation, like thesauri, standard schemas, and past mappings. Most
solutions use hybrid approaches that cover all three themes. Our
work falls purely under the second category. Existing data driven
approaches have not used any distributional information to discover
relationships between columns, apart from simple statistics. Cur-
rent approaches use string-based comparisons (prefix/suffix tests,
edit distance, etc.), value ranges, min/max similarity, and mutual
information based on q-gram distributions [11, 7, 8, 12, 13]. Rahm
and Bernstein [15] conducted a survey on schema matching tech-
niques.

Previous work tangentially related to discovering attributes is
that on discovering columns that contain similar values. A number
of statistical summaries have been developed for that purpose, in-
cluding min-hash signatures [5], and locality sensitive hashing [9].
These techniques cannot be used for discovering attributes, since
they only capture intersection relationships between columns and
no distributional information.

7. CONCLUSION
We argued that discovering attributes in relational databases is an

important step in better understanding and working with the data.
Toward this goal, we proposed an efficient solution, based on statis-

tical measures between pairs of columns, to identify such attributes
given a database instance. Our solution was able to correctly iden-
tify attributes in real and synthetic databases with very high ac-
curacy. In the future, we plan to investigate whether the tech-
niques proposed here can be extended to discover multi-column
attributes (for example when customer names are expressed as sep-
arate first/last name columns) and also explore whether information
theoretic techniques can be used to solve the problem of horizon-
tally partitioned attributes (like telephone numbers based on loca-
tions).

8. ACKNOWLEDGEMENT
The work of Meihui Zhang and Beng Chin Ooi were in part sup-

ported by Singapore MDA grant R-252-000-376-279.

9. REFERENCES
[1] B. Ahmadi, M. Hadjieleftheriou, T. Seidl, D. Srivastava, and

S. Venkatasubramanian. Type-based categorization of
relational attributes. In EDBT, pages 84–95, 2009.

[2] N. Ailon, M. Charikar, and A. Newman. Aggregating
inconsistent information: Ranking and clustering. Journal of
the ACM, 55(5), 2008.

[3] N. Bansal, A. Blum, and S. Chawla. Correlation clustering.
Machine Learning, 56:89–113, June 2004.

[4] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. CACM, 13(7):422–426, 1970.

[5] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher. Min-wise independent permutations.
Journal of Computer and System Sciences, 60(3):630–659,
2000.

[6] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator
for similarity joins in data cleaning. In ICDE, page 5, 2006.

[7] R. Dhamankar, Y. Lee, A. Doan, A. Y. Halevy, and
P. Domingos. iMAP: Discovering complex mappings
between database schemas. In SIGMOD, pages 383–394,
2004.

[8] H. H. Do and E. Rahm. COMA - a system for flexible
combination of schema matching approaches. In VLDB,
pages 610–621, 2002.

[9] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. In VLDB, pages 518–529,
1999.

[10] IBM. CPLEX optimizer. http://www.ibm.com/software/
integration/optimization/cplex-optimizer.

[11] J. Kang and J. F. Naughton. On schema matching with
opaque column names and data values. In SIGMOD, pages
205–216, 2003.

[12] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema
matching with cupid. In VLDB, pages 49–58, 2001.

[13] S. Melnik, E. Rahm, and P. A. Bernstein. Rondo: A
programming platform for generic model management. In
SIGMOD, pages 193–204, 2003.

[14] T. Milo and S. Zohar. Using schema matching to simplify
heterogeneous data translation. In VLDB, pages 122–133,
1998.

[15] E. Rahm and P. A. Bernstein. A survey of approaches to
automatic schema matching. The VLDB Journal,
10(4):334–350, 2001.

[16] T. P. P. C. (TPC). TPC benchmarks. http://www.tpc.org/.
[17] M. Zhang, M. Hadjieleftheriou, B. C. Ooi, C. M. Procopiuc,

and D. Srivastava. On multi-column foreign key discovery.
PVLDB, 3(1):805–814, 2010.

