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Abstract— Recently, there has been a proliferation of appli-
cations creating spatio-temporal data that has to be processed,
stored and queried efficiently. Existing applications may produce
Terabytes of raw data per day that routinely necessitate the
execution of millions of update operations, so as to keep the
underlying database up-to-date. Consequently, there is a need
for spatio-temporal data management systems that are able
to support such update intensive operations. Moreover, these
systems should offer users the capability to examinepast and
presentversions of the data in an on-line fashion. In this respect,
we propose a system that exploits the inherent parallelism of a
shared-nothing computing environment for storing and indexing
the spatio-temporal data. Our infrastructure consists of a cluster
of workstations (COW) connected via a Gigabit/sec network, with
servers whose operation is based on a distributed multi-version
indexing scheme. We describe our proposed system architecture,
data organization, as well as pertinent algorithms. We discuss
various optimizations whose objective is to ensure robustness
and scalability under highly dynamic situations manifested by
excessive query loads and high update rates. Finally, initial
experimental results using a system prototype and simulated
environments support the effectiveness of our approach.

I. I NTRODUCTION

Managing update intensive spatio-temporal data is becom-
ing a daunting task. With recent advances in data collecting
disciplines (satellites, sensor networks, etc.), spatio-temporal
data is produced in a massive scale and have to be processed,
stored and, most importantly, queried efficiently. With scien-
tific applications producing Terabytes of raw data on a daily
basis, the efficient execution of millions of update operations is
essential for maintaining datasets up-to-date. Example of such
environments, already in use, include the Terra spacecraft [6]
which produces around 200 GB/day and the Landsat 7 which
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generates 150 GB/day of geophysical data [26]. Collabora-
tive projects among hundreds of researchers from numerous
countries necessitate reliable data accessibility with consistent
response times to queries. The Human Genome Project [2]
is an example of such a collaborative effort that combines
talent from 18 countries. Similarly, advances in sensor network
and wireless technologies have contributed substantially to the
generation of vast datasets updated thousands of times per
second in applications such as traffic analysis and cellular
phone network management (for example a traffic control
system that tracks the positions of all vehicles coming in
and out of Manhattan). Finally, recognizing the importance
of data visualization, numerous other scientific applications
necessitate efficient management of spatio-temporal imaging
datasets that can reach the scale of Petabytes in sizes; examples
include the SkyServer [1] for astronomical research and MRI
scans for medical research [4]. There is no sign that this trend
will change in the near future, making the design of robust
spatio-temporal data systems for update intensive applications
both a top priority and a timely research objective.

The common denominator of all aforementioned applica-
tions is that their underlying access methods should be able to
support significant update operations in a way that maintains
data up-to-date. At the same time, access structures should
provide guarantees about the response time of user requests. It
is unrealistic to deploy any known disk-based spatio-temporal
access method [25], [19], [8], [20], [24] in the hope that it
could support data update rates of thousands of operations per
minute. In addition, a core requirement of a wide range of
spatio-temporal applications is to be able to store historical
information, hence, giving the ability to users to browse
past versions of data for analysis purposes (e.g., comparison,
assessment, pattern discovery, evolution trends, etc.). This
makes the “update-intensive” requirement even stronger as
inactive/older data cannot be purged but must be archived
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in secondary storage. With the previously described update
rates and data volumes it is prohibitive to store such historical
information on a single workstation. However, it is natural
to share this information on-line among multiple cooperating
sites providing for efficient querying.

In the above context, we propose an efficient data ar-
chitecture that utilizes the inherent parallelism of a shared-
nothing infrastructure for storing and indexing spatio-temporal
data. By taking advantage of existing clusters of workstations
(COW) – run-of-the-mill computers connected via high speed
LANs – multiple processing units with independent secondary
storage devices can share the load of update intensive tasks.
The abundance of aggregated disk space in such clusters
enables applications to store the update history of the spatio-
temporal data using a very cost-effective approach. Finally,
large volumes of query requests about current or past version
of the data can be processed efficiently in a decentralized col-
laborative fashion. The individual processing units can be any
of today’s low-cost workstations that feature abundant primary
and secondary space and ample processing power. A salient
feature of our adopted infrastructure is its adaptability to
application needs accomplished by on-demand up/downsizing
through simple addition or removal of workstations.

Moreover, the efficient allocation of data among multiple
COW sites guarantees that the system can be optimized for
handling efficiently multiple types of spatio-temporal queries.
Nearest neighbor queries and range queries with small or
large time intervals are directed to as many sites as possible
concurrently, yielding the best possible performance by taking
advantage of multiple processing units.

The main contributions of the paper are:

• A spatio-temporal data management system that can
support very high update rates to the most recent version
of the data.

• A system that stores the complete update history of
the data and efficiently supports concurrent queries with
varying access patterns to any version of the data.

• Dynamic load-balancing algorithms for distributing data
efficiently across the cluster in order to minimize query
response times.

• To investigate and assess advantages and trade-offs of the
proposed architecture, through experimental evaluation
using a prototype.

The following section describes the system architecture with
emphasis on data migration, update rates and load balancing.
Section 3 presents the experimental evaluation while section 4
discusses related work. Finally, the section 5 gives directions
for future research and concludes the paper.

II. SYSTEM ARCHITECTURE

In this section we discuss in detail the proposed spatio-
temporal data management system and outline its infrastruc-
ture components as well as its underpinning algorithms. The
desiderata of such a system are:

1) Ability to query both present and past versions of the
stored data in an on-line fashion.

2) Sustaining very high data update rates with minimal
performance and responsiveness degradation, if any.

3) Capability to dynamically adapt to voluminous and/or
frequent queries that might create excessive traffic and
congest specific data regions whereas other remain
lightly used. This adaptation should deliver predictable
response times to user requests.

In order to satisfy all requirements we opt for a shared-
nothing architecture that utilizes a cluster of workstations to
distribute the data among multiple sites (Figure 1).

Query Server

Storage Site 1 Storage Site 3

Storage Site 2
Coordinator
and Master

Switch

Fig. 1. A cluster of workstations connected via a high-speed switch.

Our framework utilizes aMaster site whose key objective
is to index the recent history (including the current version)
of the spatio-temporal data. We attain this goal by using a
Multi-Version R-Tree (MVR-Tree)[12], [24]. The MVR-Tree
enables us to keep a small fragment of the spatiotemporal
data at the Master (the most recent versions) and distribute
older versions to other sites. It achieves that by clustering
data that are adjacent in space and time in a small number
of tree nodes, separately from the current/active data versions.
Tree nodes that contain only expired data versions can be
easily migrated over the network to other sites. We also keep
the MVR-Tree in main memory to guarantee that very high
update rates can be sustained, by avoiding slower secondary
storage devices. We do not use an R-Tree on the Master simply
because the MVR-Tree is better at indexing data with long
time intervals, that are updated infrequently. Such data create
long rectangles on the R-Tree index nodes [8] compromising
the structure’s performance. Instead, the MVR-Tree guarantees
efficient clustering by creating artificial data copies, splitting
long rectangles into multiple smaller ones.

We appoint aCoordinatorwhose responsibility is to make
load-sharing decisions so that data is distributed intelligently
across the COW, assisting in increasing concurrent query
processing rates.

We appoint most of the sites of the cluster asStorage Sites,
whose responsibility is to utilize their plentiful resources to
archive the old data versions in secondary storage and for
handling queries about data resident in their jurisdiction. We
have various choices for indexing the past versions at the
Storage sites; for example, we could use MVR-Trees (as in the
Mater) or plain R-Trees [3], [7]. It should be noted that while
previous work on managing spatiotemporal data has suggested
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various advantages in using MVR-trees [12], [24], such works
have not considered query parallelism. In our environment,
we want to support many concurrent users issuing possibly
overlapping queries. Under this consideration, we choose to
deploy R-Trees [3], [7] instead of MVR-Trees on the Storage
Sites. In particular this choice is supported by the following
reasons:

1) First, it would be difficult to apply any dynamic load-
sharing policies that need to move data between Storage
Sites if MVR-Trees were used, since they are append
only structures; this operation is much simpler and more
efficient for R-Trees.

2) In addition, R-Trees have a smaller directory structure
(with larger fanout) that is query and update efficient and
introduces smaller space overhead. (A similar approach
has been used in the MV3R-Tree [24], where R-Trees
are used to index the leaf level of a multi-version
structure.)

3) Finally, the R-Tree is more robust than the MVR-Tree
for long period queries [12].

We also employ aQuery Serverthat undertakes the respon-
sibility of distributing user queries to the appropriate Storage
Sites and compiling the results that are finally furnished to
users.

Any workstation can be selected to play one or all of
the above roles. Depending on system load and the state of
the network, redistribution of the roles aids in avoiding and
overcoming bottlenecks.

A. Migrating Data to Storage Sites

The multi-version approach [5], [21] is a typical method
employed for storing the update history of temporal data.
A widely used multi-version structure for multi-dimensional
spatio-temporal data is the MVR-Tree [12], [24]. In order to
illustrate how the MVR-Tree can be used to help distribute
data among COW sites, a better understanding of the features
of the structure is required. Consider a spatio-temporal dataset
and assume that an R-Tree indexes the objects’ shapes and
locations. As updates occur, the R-Tree evolves by applying
the corresponding object insertions and deletions — the old
versions of the data are lost forever. On the other hand, storing
all versions of the data and the evolution history of theR-Tree
nodes corresponds to making the treemulti-version.

A multi-version structure is a directed acyclic graph of
nodes. Moreover, it has multiple root nodes each of which is
responsible for recording a consecutive part of the ephemeral
R-Tree evolution. The root nodes can be accessed through a
linear array called theroot∗. Each entry in theroot∗ contains
a time interval and a pointer to the tree that is responsible
for that interval. Data records in the leaf nodes of an MVR-
Tree maintain the temporal evolution of the ephemeral R-
Tree data objects. Each data record is thus extended to
include the lifetime of the object:insertion-timeanddeletion-
time. Similarly, index records in the directory nodes of an
MVR-Tree maintain the evolution of the corresponding index
records of the ephemeral R-Tree and are also augmented with
insertion-timeanddeletion-timefields.

The MVR-Tree is created incrementally following the up-
date sequence of the dataset objects. Consider an update at
time t. The MVR-Tree is searched to locate the target leaf
node where the update must be applied. This step is carried out
by taking into account the lifetime intervals of the index and
the leaf records visited while traversing the tree. After locating
the target leaf node, an insertion adds a new data record with
lifetime [t,∞). A deletion at timet′ updates the deletion-time
of the corresponding data record from∞ to t′. All nodes
may contain both live and expired versions of data. A node
that contains only expired data is called “dead.” The MVR-
Tree uses various policies to determine whether a specific node
should artificially expire, by copying all live entries to other
nodes and leaving the dead entries behind. This process is
necessary for clustering all live entries together in a small
number of nodes to guarantee efficient access to the current
state of the dataset. It also de-clusters the evolution history into
disjoint time intervals, indexed by separate (but overlapping)
trees.

A sample MVR-Tree appears in Figure 2 (for simplicity
the figure shows a conceptual view of the structure, not an
accurate representation). Theroot∗ contains three trees with
jurisdiction intervals consecutive in time. The trees index
overlapping data spaces at different times. The first two trees
point to entries that are already dead. The third tree points
to the most recent state of the data, but also contains some
expired versions. All tree nodes contain consecutive versions
of the same data (e.g., entry B in trees I and II). Also, some
long lived entries have artificially expired (e.g., entry A) in
order to decrease their extent on the time dimension.
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III
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Fig. 2. A simple MVR-Tree.

Our networked approach is based on migrating all dead-
leaf nodes to Storage Sites. Essentially, we use the MVR-Tree
policies to determine when a node should become dead and at
that time move it to an appropriate site. To better facilitate
concurrent processing, all Storage Sites maintain a queue
of pending requests. The Master initiates a node migration
request and transmits it to the indicated Storage Site, which
might have to append it in a queue until enough resources
are available to process it. Meanwhile, the Master may elect
to place more requests on other sites. A number of heuristics
can be applied to determine the receiving Storage Site of a
dead tree node yielding various feasible migration policies:

1) Round-robin.
2) Least-loaded Storage Site for update efficiency.
3) Proximity-clustering where data is uniformly spread out
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across the cluster.
4) Temporal-clustering where every Storage Site holds a

small time interval of the evolution history.
In order to take full advantage of the parallel processing

potential of our architecture, ideally we would like to place
the data such that the number of workstations that are required
to answer a random query is maximized. Intuitively, this
means that each workstation should index as larger part of
the universe as possible. This maximization policy essentially
requires assigning nodes to workstations that contain other
nodes that are as far away as possible in the data-space. Thus,
for a given query all workstations will probably contain data
that may qualify as answers.

The round-robin policy distributes the dead leaf nodes
across the workstations in sequence. The idea behind this
algorithm is that the nodes will be uniformly distributed in the
long run. If the leaf nodes of the Master MVR-Tree display
uniform distribution, then the round-robin policy offers results
close to the optimal policy described above. Otherwise, the
distribution is random.

In order to keep the system operational while data migration
is taking place, the node that is being moved to a new site
must also remain on the Master MVR-Tree until the process
is complete and all data has been committed. Any user query
that refers to a time instant covered by the Master’s jurisdiction
interval has to be handled by the Master itself, hence con-
suming resources, locking part of the tree, and compromising
update performance. The Least-loaded Storage Site policy
tries to commit the migrated data as soon as possible in
order to relieve the Master from the responsibility of that
data. If the system is heavily loaded certain workstations may
have too many pending requests (user queries, load-balancing
operations, etc.), thus, the Master should choose the one with
the shortest queue as the recipient.

Proximity-clustering was proposed in [10]. This algorithm
distributes leaf nodes intelligently based on proximity mea-
surements between nodes. The original algorithm was used
for distributing the nodes of a single structure to multiple
disks, in order to maximize the number of disks that need
to be accessed for a single query, thus parallelizing the query
execution process [10]. Here, we modify the algorithm in order
to locate the workstation that contains the structure with the
leaf level which best accommodates the migrated node based
on the following Proximity heuristic. The proximity between
two nodesR andS is defined as:

P (R, S) =
# of queries retrieving both R and S

total # of queries answered

The measure of proximity can be computed by computing
the integral of the number of queries that retrieve bothR and
S, for all query sizes. Another similar but simpler heuristic is
to assign each leaf node to the R-Tree with the root node that
needs to be enlarged the most in order to accommodate it. A
drawback of this simple heuristic is that once all trees have
been expanded to cover the data space, all new leaf nodes will
be already contained in the trees, thus limiting the effectiveness
of the heuristic.

A different set of heuristics attempts to cluster historical
data according to time. If each Storage Site holds only a
specific fragment of the evolution history, multiple concurrent

queries that refer to disjoint time intervals can be processed
all at once by redirecting them to the appropriate sites. A
drawback of this heuristic is that as time always progresses,
the jurisdiction time intervals of each Storage Site cannot be
rigid. Special migration policies should be in effect in order
to expand the jurisdiction intervals of some Storage Sites in
order to make more room on others.

B. Sustaining High Update Rates

Since many spatio-temporal applications generate enormous
amounts of updates per time instant, it is essential for a spatio-
temporal management system to support high update rates.
Usually, disk I/O dominates the update cost. State of the art
systems utilize disk based index structures that are bounded in
the number of updates that they can sustain by the limited disk
access rates [14]. The maintenance cost of arranging the pages
of a dynamic index structure so that it can support sequential
I/O is prohibitive. Thus, most practical multi dimensional
indices are bound to use much slower random accesses for
loading disk pages in main memory. Indicatively, the access
cost of a single page in cutting-edge hard drives is in the order
of 5msecs while the access time to data stored in main memory
is in the order of 50nsec, or a factor of 100 thousand times
increase in speed. Even sequential I/Os that are a factor of 12
times faster than random I/Os are much slower in comparison.

Furthermore, main memory is becoming less expensive and
most of today’s high-end workstations are equipped with a
few gigabytes of RAM, which is enough for storing millions
of spatio-temporal objects. For example, assuming that the rep-
resentation of a vehicle consumes 64 bytes (a 2-dimensional
point and its velocity, along with some extra information),
a dataset of 1 million vehicles consumes approximately 60
Megabytes of space.

The use of virtual memory to seamlessly increase the space
available by volatile memory in modern operating systems
presents two distinct advantages: even if a dataset far exceeds
the capacity of available main memory, provisions to store it
on disk are already taken by the OS. Second, if the dataset
needs to be persisted on secondary storage, it can be done so
efficiently, with minimum changes in design.

We choose to keep the MVR-Tree in main memory on the
Master site to take advantage of all previous arguments. In ad-
dition, since we place older data to Storage Sites, we anticipate
the average cost of updates to decrease substantially, since
multiple CPUs amortize the costs involved in the updates.
The more workstations that are attached to the cluster, the
cheaper the overall cost of each update becomes, since the
trees resident at Storage Sites become shorter, smaller and,
thus, more robust. Also, by migrating older data to Storage
Sites, we guarantee that the most recent version of the MVR-
Tree can fit in the main memory of the Master.

C. Dynamic Load-Balancing

A distributed architecture by itself may not be sufficient in
providing optimal performance for queries involving expired
versions of the data. In order to optimize the performance
gain due to concurrent processing it is necessary to guarantee
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that the largest possible number of Storage Sites participate
in answering any given query. Thus, it is desirable that the
load distribution among sites is uniform. This is the job of
the Coordinator, which monitors the load of each Storage Site
and dynamically (i.e. while the system is online) schedules
resource allocations among the sites. To achieve the desired
load adjustments, the Storage Sites perform data migration
since it is anticipated that the load follows the data. This data
migration is feasible since leaf nodes in the R-Trees of Storage
Sites do not follow any ordering and can easily be removed
and inserted in the tree of another site. This process might
reduce the quality of R-Trees (causing increased dead space
and/or overlap at lower utilization), but it is our intention that
a single Storage Site does not hold data which is spatially
clustered.

To reduce the processing cost due to the Coordinator and
to improve the scalability of the system, the load-balancing
decision making consumes as few resources as possible. It
is the responsibility of the Storage Sites to determine if they
are overloaded and to request migration from the Coordinator.
When a site’s load surpasses a predefined threshold for a
specified period of time, the site issues aMigration Request
message to the Coordinator. This global load threshold can
be adjusted dynamically and directly affects the number of
control messages exchanged between Storage Sites and the
Coordinator. If a site is denied the request, it increments this
threshold, so as to increase the interval when the next request
would be sent (if it continues to be overloaded).

When a Coordinator receives aMigration Requestmessage,
it initiates the load-balancing algorithm. In keeping with our
goal of minimal processing at the Coordinator, this algorithm
is designed to make decisions fast. It finds the minimum
and maximum loaded Storage Sites, and compares their load
spread to a system-wide threshold. This threshold controls the
imbalance level that the system is willing to tolerate before
any migration actions are taken. If the load spread is below
the threshold, the site which sent the request is informed
that no migration will occur. Otherwise, the Coordinator
selects a destination client, which is to receive portion of the
data indexed by the requesting Storage Site. The client with
minimal load is selected to receive data from the requesting
Storage Site, unless it is already in the process of receiving
data from another site.

If the Master’s migration policy is based on temporal
clustering the load-balancing algorithm must also consider the
jurisdiction intervals assigned to Storage Sites. In that case, the
destination client selected has a minimal load and a jurisdiction
interval that is as close as possible to the requesting Storage
Site’s jurisdiction. Thus, the requestor will relinquish portion
of its jurisdiction, along with the data in that jurisdiction, to
the destination client.

When the Coordinator has granted a migration authoriza-
tion, the overloaded Storage Site must carefully select data
for migration. To accomplish this data selection efficiently,
Storage Sites store statistics on the load distribution of the
nodes within their R-Trees. These statistics consist of the
read/write frequency of each node and reflect the current query
workload. Thus, if queries are skewed, Storage Sites will be

able to pinpoint the “hot” data, and will select portion of that
data for migration. The amount of data to migrate is related
to the workload skew and is proportional to the desired load
reduction relative to the current load. The desired load reduc-
tion is half of the difference between the overloaded Storage
Site’s load and the destination client’s load. The data selection
process consists of traversing the tree along the “hottest” path,
until a subtree is reached which contains enough data for
migration to achieve the desired load reduction. This entire
subtree is transferred to the destination client and is deleted
from the overloaded Storage Site.

For skewed workloads where most queries target a small
subset of data, it is beneficial to have this data distributed
across all participating Storage Sites. Furthermore, since the
Storage Sites index historical data, it is likely that interval
or timestamp queries will exhibit a noticeable spatial and/or
temporal skew. This gives the Coordinator a significant benefit
in distributing the set of currently queried data over the
sites. Our data selection technique correctly identifies the hot
data, and migrates portions of it to other Storage Sites. As
workload patterns change, the system dynamically adapts to
optimize its performance by increasing the level of parallelism.
Even though this process involves a certain overhead, in an
imbalanced system the expected performance increase can
easily outweigh the overhead. Thus, in addition to supporting
high update rates, our system provides improved performance
for concurrent queries on historical data.

An important consideration in correctly accomplishing our
load balancing scheme is the definition ofload. Even though
it is common to consider disk I/O rates, CPU load, process
queue length, and similar performance information as load
criteria, we resort to a more readily available measurement:
the number of elements retrieved per unit of time. For this
information to be meaningful across all Storage Sites, it is
necessary to consider it relatively to the maximum capacity
of each Storage Site. The maximum capacity is the maximum
number of elements that a Storage Site can retrieve per unit
of time. This normalization guarantees that the load values are
relevant even in a system composed of heterogenous Storage
Sites. Given that a Storage Site contains sufficient data, the
maximum capacity can be measured by requesting all data
indexed by this site. This procedure can be performed prior to
the system’s “go-live,” and does not need to be repeated. Thus,
we defineload as the number of elements retrieved per unit of
time as a percentage of the maximum number of elements a
Storage Site can retrieve per unit of time. Defining load in such
a way indirectly captures a workstation’s intrinsic hardware
performance characteristics.

Thus, Storage Sites monitor their own load and when it
overcomes a preset limit they issue aLoad Updatemessage to
the Coordinator. The Coordinator keeps a table of each Storage
Site’s load and timestamp of when the information was last
updated (see Figure 3). Thus, the Coordinator can explicitly
request a load update if it considers any of the data in the
load table to be stale. Updating the load in such a way (as
opposed to periodic updates) reduces the number of messages
transmitted between the Coordinator and Storage Sites;Load
Update messages are only exchanged when necessary. In
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Fig. 3. The Coordinator maintains a global view of the system’s load
distribution. LSPTHRESH is the load spread threshold which controls the
level of load imbalance the system can tolerate.

addition, the load table contains information on the current
migration status of Storage Sites. During the load-balancing
decision making this information is used to remove Storage
Sites currently involved in data migration from the set of
potential data recipients, so as to avoid selecting them as
destination clients when migration is requested.

With the Coordinator in place, the Master can migrate
expired data according to its preferred policy, while the Coor-
dinator maintains the data distribution optimal for the current
workload. While the Master provides optimal indexing for the
current version of the data, the constant interaction between the
Coordinator and Storage Sites results in superior performance
for queries involving past versions of the data. An additional
benefit of using the Coordinator is that it enables a zero-
administration up-scaling scheme of the system. When more
resources are needed, the system’s capacity can be increased
simply by attaching additional Storage Sites. The Coordinator
will detect the imbalance since the new sites’ load will be 0%
and will issue data migrations to these sites allowing them to
participate in the maintenance of data, effectively reducing the
overall system load.

III. E XPERIMENTAL EVALUATION

In this section we present a preliminary experimental eval-
uation of our prototype system and algorithms.

A. Setup

We implemented both a main memory MVR-Tree and an
external memory R*-Tree as described in [24] and [3] respec-
tively, using the GNU C++ compiler. We used TCP sockets
for all necessary communication between cluster workstations,
and POSIX threads for concurrency. We setup a cluster of 8
workstations connected via a high-speed switch and designated
one machine as the Master and Query server, and the rest as
Storage Sites. All machines had Pentium 4 1.4GHz CPUs.
Storage Sites had 512 Megabytes and the Master 1 Gigabyte
of main memory. All workstations were running Linux.

We generated a synthetic workload of vehicles moving on
the freeway system of Illinois. The simulation lasted 100
time instants (every time instant corresponds to 1 minute)
and involved 500,000 vehicles that issued updates every few
time instants. A total of almost 10 million updates were
generated throughout the experiment, which is equivalent to
an average of 100,000 location updates per time instant.
Archiving the history of all updates corresponds to a 100-fold
increase in space requirements, when compared with keeping
the most current state of the dataset only. We also generated
synthetic range query workloads with various characteristics,
which were injected in the system during the simulation. The
workloads contained 10 queries per time instant, while the
area covered by the query was 0.25% and 1% of the total
universe space, and the time intervals spanned from 5 to 20
time instants.

We compared the system against the straightforward ap-
proach, namely, a single-CPU running a main memory MVR-
Tree with historical data persisted to secondary storage. We
let the two systems yield the maximum processing rate of
incoming updates and query requests — that is, we buffered a
large number of operations in main memory and let the trees
consume them sequentially with the fastest possible rate. In the
end, we measured the average processing time per operation
(we kept the systems idle every time the buffer had to be
re-populated).

B. Scalability

We run a scalability experiment that measures the average
cost per update operation with increasing number of Stor-
age Sites. We implemented the round-robin (RR) and the
proximity-clustering (PC) migration policies. The results are
shown in Figure 4. The main memory parallel MVR-Tree
can sustain up to 2000 updates per second (i.e., 0.5msecs per
update) with the round robin policy. In comparison, the tradi-
tional single-CPU MVR-Tree can support only one quarter of
that. The proximity-clustering policy performs poorly for any
number of Storage Sites, canceling out the gains offered by
the parallel architecture, due to excessive per site computations
and increased message exchange which contributes to heavier
network traffic. For our prototype system, the cost per update
operation does not improve when increasing the number of
Storage Sites beyond 3. One reason is that the main memory
MVR-Tree on the Master site can handle most of the updates
very fast, with the given dataset. We are planning to test the
system using heavier data workloads.

C. Query Efficiency

To test the querying efficiency of the proposed system
we measured theaverage response time(Response), i.e., the
elapsed time between the submission of a query request and
when the first query results returned to the user, and the
average total time(Total), which is the time required to fetch
all data satisfying a query request. The results are shown in
Figures 5 and 6 for all query workloads. We used the round-
robin policy for these experiments. In the figure, we also
plot the average response time for the single CPU MVR-Tree
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(MVR Response); for clarity, we omit the average total time
since it was very close to its response time (the main reason
being the absence of network message exchange overhead).
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Fig. 5. Small period queries.

Intuitively, for larger query sizes the total query cost be-
comes higher. Nevertheless, it drops substantially when the
number of Storage Clients increases, which makes the system
very scalable even for large result sizes that need to fetch
many data. In comparison, the single CPU MVR-Tree offers
very large response times, even larger than the total query time
of the parallel architecture, for more than 3 sites.
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Fig. 6. Large period queries.

D. Query Responsiveness

Figure 7 shows query response times for a COW with 7
Storage Sites and increasing query time intervals. A significant
observation is that the average response time per query is very
small (4 to 32 times smaller in comparison to the single CPU
MVR-Tree), and remains practically unaffected by the query
size. This suggests that the average time that a user has to
wait before receiving the first query results is a system specific

constant which is independent of the query characteristics. The
same does not hold for the single CPU MVR-Tree, where the
average response time degrades fast with increasing query time
interval sizes. Another observation is that the response time
does not improve with increasing number of Storage Sites.
Response time is affected mainly by the height of the R-Trees.
If the number of sites becomes large enough such that, after
re-distributing the data, the height of the structures becomes
smaller, we expect the query response time to improve.
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Fig. 7. Query responsiveness.

E. Closing Remarks

It is evident that the shared-nothing MVR-Tree approach
offers a lot of potential for designing a system that can
sustain very high update rates, while, at the same time, ensures
query responsiveness. Spatio-temporal management systems
that can keep up with current application needs have not
been developed or designed yet. A scalable system like the
one proposed in this paper is a promising approach that
can guarantee successful integration of spatio-temporal access
methods in highly dynamic environments. The proposed ar-
chitecture constitutes indeed a highly efficient spatio-temporal
framework that encompasses both historical and on-line query
capabilities.

IV. RELATED WORK

Previous research has addressed various aspects of the
distributed indexing problem. The adaptive parallel B+-Tree
(AB+-Tree) is proposed in [16] as a multi-tier architecture
which preserves the global height of the tree. The global-
height balance is required due to the sequential ordering of
the leaves which imposes a logical ordering of the distributed
sites as well. This restricts migration of data to occur only
between sites which are logically adjacent. In a follow-up of
the AB+-Tree idea, an R-Tree version is presented in [18]
where a simulation study is used to analyze the effectiveness of
the proposed mechanism. This mechanism involves a two-tier
scheme composed of a Master site which holds information
about the roots of client’s R-Trees and their loads and makes
periodic evaluations of the balance of load in the system. If
the Master deems the system to be imbalanced, it composes
lists of destination and source clients, the amount of data to
be migrated, and broadcasts these data to all clients.

A shared-memory environment is discussed in [17]. In [9] a
combination of indexing and hashing is applied for distributed
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indexing of one-dimensional data. In [15] a distributed search
tree is introduced as an improvement to distributed linear
hashing methods. A striping and load-balancing mechanism
adaptable to changing access patterns is proposed in [22]
in the context of parallel disk systems. A “semi-distributed”
version of R-Trees is described in [13] and optimal data
sizes and response times are analytically and experimentally
derived. A single-processor parallel-disk version of the R-
Tree is proposed in [11]. An improvement on this work is
presented in [23] where a master-client R-Tree indexes data
in a shared-nothing environment. Finally, a distributed R*-
Tree based mechanism for indexing multidimensional data in
a cluster of workstations is introduced in [14] where load
balancing is achieved through data migration and algorithms
based on access statistics. The main difference with this work
is that we index both past and present versions of the spatio-
temporal data and, in addition, we use an MVR-Tree on the
Master in order to cluster data more efficiently in both space
and time.

V. CONCLUSIONS

In order to satisfy our requirements, we opted for a shared-
nothing infrastructure using a cluster of workstations. We
introduced a robust spatio-temporal management system based
on an MVR-Tree server and multiple R-Tree storage clients.
Our proposed system is tailored for highly dynamic environ-
ments that demonstrate varying query access patterns and high
update rates. The system is able to sustain predictable response
times to user requests under heavy loads. Its main feature is
the ability to store the complete update history of the spatio-
temporal data giving the ability to users to pose queries about
both past and present states of the data. We showed experimen-
tally that the proposed system can live up to our expectations,
sustaining thousands of updates per second without substantial
performance degradation. We plan to extend the system to
support predictive queries and investigate the implications of
various sophisticated load-sharing approaches and their effect
on user queries.
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