SallL: A Library for Efficient Application
Integration of Spatial Indices

Marios Hadjieleftheriot), Erik Hoelf, Vassilis J. Tsotrds
* Computer Science Department
University of California, Riverside
Email: marioh, tsotras@cs.ucr.edu
T Environmental Systems Research Institute
380 New York Street
Redlands, CA 92373
Email: ehoel@esri.com

Abstract—Many scientific applications deal with spatial, spa- structures under a common application programming interface
tiotemporal and other multidimensional indexing structures, would be very valuable to the user.
typically managing millions of objects with arbitrary and com- The major difficulty of such an undertaking is that most

lex features. Choosing the appropriate method to inde ch . . . o .
Sat); becLé)mses rathzlr %ifficult.p%a\?irl\g an index IiblraryxtrS]:\t index structures have diverse characteristics that distinguish

can combine different indices under the same programming them. For example they may employ data or space partitioning,
interface is thus very valuable. In this paper we presentSalL they could have rectangular, spherical or other node types,

(SpAtial Index Library), a robust and extensible library that they are balanced or unbalanced, they index points, rectangles,
enables simple integration of spatial index structures in existing |inas or other shapes, they can have arbitrary dimensionality,

applications. We mainly focus on design issues and elaborate | dditi hould b bi
on technigues for making the framework generic enough, so etc. In addition, programmers shou e able to use access

that it can support user defined data types, customizable spatial methods that can exploit the semantics of application-specific
queries, and a broad range of spatial (and spatio-temporal) index data types by customizing existing structures, while making

structures. The_ I_ibrary is publicly available and h_as already_been sure that meaningful queries can be formulated easily for the
successfully utilized for research and commercial applications. specific data types.
Moreover, it is vital to adopt a common design framework
|. INTRODUCTION in order to promote reusability and familiarity, especially

It is well recognized that a plethora of scientific and oth for large applications where many developers are involved,

S) . . he framework should capture the most important design
appl!cgtlons_deal with spat!al, spatlotempor.al gnd genera{:%aracteristics common to most structures, into a concise
multidimensional data. Typically, such applications mana%eet of interfaces so that developers can concentrate on other

millions of objects with arbitrary and complex spatial features. pects of the development process. Its interface should be

Examples include GIS applications that manage maps wi sily extensible to address future needs without necessitating
numerous layers and hundreds of thousands of features fg/ " :
i isions of client code.

astronomical applications like the SkyServer [2] indexing These fundamental requirements make the design of a

millions of images, traffic analysis and surveillance applica- . L .
9 y bp neric spatial index framework a challenging task. Even

tions that track numerous moving objects, and bioinformati€|§ou h there is a substantial volume of work on Spa-
applications about thousands of genes. 9 P

Usually, the end-user of such applications is interested ti'l’%lI indexstructures andtheir -propertles., little work_ has_
analyzing a small fragment of the data at a time, issui peared that addresses design and implementation is-

various advanced spatial queries. The utility of spatial indexi le;. dTOW?LdS th't‘; :;um, tg:s paperlpr.esteﬁmlt_., a sfp a
techniques for such applications has been well recognizi | [hdex dibrary that enables simpie ihtegration ot spa-

complex queries can be answered efficiently only with the u 1 a_nd spatlo-tempor_al index structures into_existing ap-
cations. A sample implementation is publicly available

of such structures (e.g., nearest neighbor and top-k queri itp://www.cs.ucr.eduﬁmarioh/spatialindex) and has been

Consequently, many indexing techniques aiming at solvi d successfully for both research and commercial purposes
disparate problems have appeared lately in the literature. E ; ; :
'SP P Ve app . ! Y v ., UCR and ESRI). We proceed with a discussion of related

technique has its own advantages and disadvantages, b ffi ; e

suitable for different application domains or dataset type\él.O , followed by a high-level description of Sall.
Therefore, choosing an appropriate access method for the

problem at hand is rather difficult. Hence, it becomes evident 1. RELATED WORK

that a spatial index library which can combine all index The most relevant work to ours is XXL [5]. The eXtensible

This work was partially supported by NSF grants 11S-9907477, EIAa'nd fleXible Library offers both !ow-levgl and high'le_vel
9983445, 115-0220148. components for development and integration of spatial index

In the figures:

PropertySet, or a collection of< PropertyName, Value >
]Abstractclass] Concrete class pairs. Property sets are useful for passing an indeterminate
number of parameters to a method, even after the interfaces
]T have been defined, without the need to extend them. It also
provides anExceptionclass hierarchy for promoting the use
of exception handling in client code, since failure of index
- structure components is not a rare situation. Finally, it provides
other utility classes like external sorters, comparators, etc.,
details of which are omitted due to lack of space.

B extends A B implements inherits

A and B association

In the text:

Interface, Abstract class, Concrete class, B. The Storage Manager Toolkit

Desien Parreny An essential, critical part of spatial indexing tools is the
storage manager. It should be versatile, very efficient and

Fig. 1. Notation used in the paper. provide loose coupling. Clients that want to persist entities

should be unaware of the underlying mechanisms, in order

. to achieve proper encapsulation. Persistence could be over
structures. Even though XXL is a superset of SalL, it d'ﬁert%e network, on a disk drive, in a relational table, etc. All

in two major aspects. First, our implementation offers a V€h¥ediums should be treated uniformly in client code, in order

concise, straightforward interface for querying different 'ndet)6 promote flexibility and facilitate the improvement of storage

isr:{u;:ftures |rr1 ailngn)l(form ri?ianger. I: dc\(l)vntraf?t,r X>r(nL ﬂuerﬁn?nfinagement services as the system evolves.
erlaces are Index spectiic. second, we Oler a More generaly, storage manager toolkit is shown in Figure 2. The key

ized querying capability. Despite the fact that XXL can SlJploogltbstraction is & EMENTO pattern that allows loose coupling

a variety of advanced spatial queries, user defined queTCween the objects that are persisted and the concrete im-

have to be .implemented by hand requiring mOdiﬁca.tion.s.ﬂementation of the actual storage manager. An object that
a" affected index strgctures. In co.ntrasF, we offer. an II‘IIUII.I Wants to store itself has to instantiate a concrete subclass of
interface for formulating novel queries without having to revisg o mentothat accurately represents its state. Then, it can pass

the library in any way. o .
.) . this instance to a component supporting t8eorageManager
GIST (for Generalized Search Tref]) is also relevant interface, which will in turn return an identifier that can be

to our work. GIST is a framework that generalizes a heiggéed to retrieve the object's state at a later time

ba]anced,_smgle_ rtoo';ed segr;r_:_ tree with vatrlable_;anout: YThe IBuffer interface provides basic buffering capabilities.
using a simple intertace, &l can support a wide Va.r.'?pfsing the classes that implemeliuffer is straightforward;

of s_earch trees and their corresponding querying capabllm_ y act as a proxies between a storage manager and the client
Various papers have been recently proposed to make Gi t uses it, buffering entries as they see fit. Conveniently, the

more generic [3], [4]. i . o . .
. ient is unaware that buffering is taking place by assuming
Our work is orthogonal to GIST and its variants. GIST anﬁwat it is interfacing with a storage manager directly. This ar-

its extensions address the' implementation ISSues behind hitecture provides sufficient flexibility to even alter buffering
access methods by removing the burden of writing structur licies at runtime

maintenance code from the developer. SalL does not aim"at
simplifying the development process of the index structures]
themselves, but more importantly, the development of tife The Spatial Index Interface

applications that use them. Spatial access methods index complex spatial objects with
varying shapes. In order to make our interfaces generic it
I1l. SPATIAL INDEX LIBRARY ARCHITECTURE is essential to have a basic shape abstraction that can also

present composite shapes and other decorations (meta-data

In this section we present the Spatial Index Library T deri . tion i t We define thgh
more detail. We analyze the most important concepts behi Z-ordering, nsertion time, e c.). e detine ape
MPOSITE pattern (Figure 3) as an interface that all index

each design decision and give useful examples. Figure ‘ hould o d le their imol tation f
summarizes the notation used in the text and diagrams. WH%WC ures should use to decoupie their impiementation from
tual concrete shapes. For example, inserting convex poly-

ferring t ific desi tt the definitions 72! . .
referring 1o Spectiic design patierns we use the detinitions ns into an R-tree [7] can be accomplished by calling the

go
Gamma et al. [6]. IShapegetM BR method to obtain the minimum bounding

] region of the polygon. The R-tree can remain unaware of the

A. The Core Toolkit details of convex polygon representations. Complex shapes
This toolkit addresses very simple but essential needs fman be represented by composing differiStiapesunder one

any generic framework. It provides \ariant type for rep- class. Hence, they can be handled uniformly.
resenting a variety of different primitive types (like integers, Another important capability of a generic framework is
floats, character arrays, etc.), which is necessary for avoiditeg provide a sound set of index elements (leaf and index
hard coding specific primitive types in interface definitionsodes, data elements, etc.) that enable consistent manipulation
that might need to be modified at a later time. It offers af diverse access methods. For example, querying functions

IStorageManager | | IBuffer ~| Buffer

loadMemento(long id, Memento&) long getHits() Buffer(IStorageManager&, PropertySet&,)
storeMemento(long& id, const Memento&) clear()

deleteMemento(long id)
1

v | addEntry(long id, const Memento&)
MemoryStorage | | femoveEntry()

| e R
‘ - HashMap capacity
buffer
Memento DiskStorage
getState(long& length, byte** data) —<{ pageFil Y
setState(long lenght, byte* data) agerile LRUBuffer
Fig. 2. The Storage Manager Toolkit.
IEntry IData defined with thelShapeinterface, the querying capabilities
long getldentifier() <! getData(long len, byte**) of the index structures are only limited by the ability of the
IShape* getShape() developer to implement correctly the appropriate predicate
IShape INode functions. ' . .
bool intersects(IShape&) :ong getg:g:glrgncf)fyntf) To be able to customize querying pehawor even further
bool contains(IShape&,) ong getChildidentifier(long) a VISITOR pattern is used. ThéVisitor interface is a very
IShape* getChildShape(long) . .
bool touches(IShapes&) ! Jong getLevel() powerful feature (something that XXL does not provide). The
long getDimension() bool isindex() query caller can implement an appropriate visitor that executes
double getMBR() bool isLeaf() user defined operations when index entries are accessed. For
example, the visitor can ignore all node entries and cache all
Fig. 3. The IShape and Spatial Index Elements Interfaces. visited data entries (essentially the answers to the query) for

later processing (like an enumeration). Instead, it could process
the answers interactively (like a cursor), terminating the search
should return iterators (i.e., enumerations or cursors) owshen desired. Other useful examples are tallying the number
well-defined data elements, irrespective of what kind of struof query 1/Os and visualizing the query progress. (A visitor
tures they operate on. We achieve this by providing tfexample is presented in the Appendix.)
following hierarchy:IEntry is the most basic interface for a The IShapeand IVisitor interfaces enable consistent and
spatial index entry; its members are an identifier and a shaptaightforward query integration into client code, increas-
INode (that inheritslEntry) represents a generic tree node; itthg readability and extensibility. New index structures can
members are the number of children it contains, its tree levatid specialized functionality by requesting decord®dape
and if it is an index or a leaf. ThiData interface represents objects (thus, without affecting the interfaces). TiNgsitor
a data element; it contains the meta-data associated with ithierface allows existing visitor implementations to be reused
entry or a pointer to the real data. for querying different types of access methods and users can
The core of the spatial index interface is tHgpatialln- customize visitors during runtime.
dex FACADE pattern. All index structures should implement The nearest neighbor query method can be customized
ISpatialindex(apart from their own custom methods), whicleven further. Since different applications use different distance
abstracts the most common index operations. This interfacenigasures to find nearest neighbors, it acceptdNmarest-
as generic as possible. NeighborComparatoobject. By allowing the caller to provide
The insertData method accepts the data object to ba customized comparator, the default nearest neighbor algo-
inserted as aiShape an interface that can be used as a simplithm implemented by the underlying structure can be used,
decorator over the actual object implementation. Meta-dathviating any changes.
can also be stored along with the object as byte arrays. Thé=or implementing “exotic” queries, without the need to
deleteData method is straightforward. It accepts tighape make internal modifications to the library, S8TRATEGY
to be deleted and its object identifier. pattern is proposed (another advanced feature that XXL
The query methods take a quel$hapeas an argument. is lacking). Using thequeryStrategy method the caller
This simple interface is powerful enough to allow the devetan fully guide the traversal order and the operations per-
oper to create customized queries (this is one of the mdormed on a structure’'s basic elements allowing, in effect,
differences with XXL). For example, suppose a circular rangbe construction of custom querying algorithms on the fly.
guery on an R-tree is required. Internally, the R-tree searthis technique uses afQueryStrategyobject for encap-
algorithm decides if a node should be examined by callirmylating the traversal algorithm. The index structure calls
the queryintersects predicate on a node’s MBR. Hence, itlQueryStrategyjet Next Entry by starting the traversal from
suffices to define €ircle class that implements thetersects a root and the IQueryStrategy object chooses which entry
function (specific for intersections between circles and MBRshould be accessed and returned next. The traversal can be
and call theintersectionQuery method with aCircle object terminated when desired. As an example, assume that the user
as its argument. Since arbitrarily complex shapes can Wants to visualize all the index levels of an R-tree. Either the

ISpatiallndex IVisitor IStatistics ICommand
insertData(long len, byte* data, IShape&, long id) — 1 - visitNode(INode&) |- - long getReads() - — — — execute(INode&)
deleteData(IShape&, long id) visitData(IData&) long getWrites() - enum Commands

containmentQuery(IShape&, IVisitor&)
intersectionQuery(IShape&, Visitor&)
pointLocationQuery(IShape&, 1Visitor&)
nearestNeighborQuery(long k, IShapeg&, IVisitor&,
INearestNeighborComparator&)
queryStrategy(IQueryStrategy&)
addCommand(int event, ICommand&)

writeNodeCommand
readNodeCommand

INearestNeighborComparator

- double getMinimumDistance(IShape&, |IEntry&)

IQueryStrategy

r———=—-—-—-—-—-+

getNextEntry(IEntry&, long& nextlD, bool& stop)

Fig. 4. The Spatial Index Interface.

R-tree implementation should provide a custom tree traverggl SkyServer. http://skyserver.sdss.org/dri/en/.

method that returns all nodes one by one, or a query straté%}yp- M. Aoki. Generalizing “search” in generalized search trees (extended
. . abstract). InProc. of International Conference on Data Engineeting

can be defined for the same purpose (which can actually be pages 380-389, 1998.

reused as is, or maybe with slight modifications, for any othgil W. G. Aref and I. F. llyas. An extensible index for spatial databases. In

hierarchical structure). An example of a breadth-first node Proc. of Scientific and Statistical Database Managempages 49-58,

traversal algorlthm 1S presented in the Appendlx (the exammﬁ J. Van den Bercken, B. Blohsfeld, J. Dittrich, J. &fmer, T. Schfer,

requires less than 15 lines of code). The possible uses of them. Schneider, and B. Seeger. XXL - a library approach to supporting
query strategy pattern are boundless. efficient implementations of advanced database querieBrdo. of Very

. . . Large Data Basespages 39-48, 2001.
Another capability that should be provided by most 'ndefé] E. Gamma, R. Helm, R. Johnson, and J. Vlissiddesign Patterns:

structures is allowing users to customize various index oper- Elements of Reusable Object-Oriented Softwafeldison-Wesley Pro-
ations (usually by the use of call-back functions). The spatial :fosrsll('om(' Cllggnsputing Series. Addison-Wesley Publishing Company, New
index interface uses @OMMAND pattern for that purpose. It [71 A. Guttman. R-trees: A dynamic index structure for spatial searching. In
declares théCommandnterface; objects implementinGom- Proc. of ACM Management of Datpages 47-57, 1984.
mandencapsulate user parametrized requests that can be [Bli- M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized search trees
on specific events, like customized alerts. All access methods g 20ase systems. froc. of Very Large Data Basepages 562-573,
should provide a number of queues, each one corresponding

to different events that trigger each request. For example,

assume that we are implementing a new index structure. We

can augment the function that persists a node to storage with

an empty list oiCommandobjects. Using theddCommand

method the user can add arbitrary command objects to this

list, that get executed whenever this function is called, by

specifying an appropriate event number (an enumeration is

provided for that purpose). Every time the function is called,

it iterates through thedCommand objects in the list and

calls their execute method. THBOMMAND pattern promotes

reusability, clarity, and ease of extensibility without the need

of subclassing or modifying the spatial index implementations

simply to customize a few internal operations as dictated by

user needs.

IV. CONCLUSIONS

We presented a robust and extensible spatial index devel-
oper's framework. We argue that the proposed framework
will help developers incorporate spatial access methods with
greater ease into existing applications. The framework is based
on well documented design patterns that promote reusability
and improved code quality. The demo will include various
examples (like the Visitor and Query patterns in the Ap-
pendix) as well as examples on how the basic interface
can be used to integrated SalL in an application. A sample
implementation in C++ and Java can be downloaded from
http://www.cs.ucr.edu/marioh/spatialindex.

REFERENCES
[1] ArcGIS. http://www.esri.com/software/arcgis/index.html.

APPENDIX
A. Design Pattern Descriptions

MEMENTO: Without violating encapsulation, capture and
externalize an object’s internal state so that the object can be
restored to this state later.

Proxy: Provide a surrogate or place holder for another
object to control access to it.

CompPosSITE Composite lets clients treat individual objects
and compositions of objects uniformly.

FacADE: Provide a unified interface to a set of interfaces
in a subsystem. Facade defines a higher-level interface that
makes the subsystem easier to use.
TABLE I
VISITOR: Represent an operation to be performed on the IQueryStrategyEXAMPLE.
elements of an object structure. Visitor lets you define a new

operation without changing the classes of the elements on
which it operates. class MyQueryStrategy
: public_ IQueryStrategy {
STRATEGY: Define a family of algorithms, encapsuIatepqge“edong> ids;

lic:
each one, and make them interchangeable. void getNextEntry(IEntry&. e,

long& nextID, bool& stop) {
CoMMAND: Encapsulate a request as an object, thereby// process the entry.

letting you parameterize clients with different requests.

/I if it is an index entry and not a leaf
/I add its children to the queue.

B. Visitor and Query Strategy Examples INode* n = dynamic_cast<INode*>(&e);
if (n!=0 && ! n->isLeaf)
for (long cChild = 0;
TABLE | cChild < n->getChildrenCount();
IVisitor EXAMPLE. cChild++)

ids.push(n->getChildldentifier(cChild));

class MyVisitor : public IVisitor { stop = true;
public: if (! ids.empty()) {

map<long, IShape*> answers; /I if queue not empty fetch the next entry.
long nodeAccesses; nextID = ids.front(); ids.pop();

stop = false;

MyVisitor() : nodeAccesses(0) {} }}

public visitNode(INode* n) { h

nodeAccesses++;

}

public visitData(IData* d) {
/I add the answer to the list.
answers[d.getldentifier()] = d.getShape();

