
1

SaIL: A Library for Efficient Application
Integration of Spatial Indices

Marios Hadjieleftheriou∗, Erik Hoel†, Vassilis J. Tsotras∗
∗ Computer Science Department

University of California, Riverside
Email: marioh, tsotras@cs.ucr.edu

† Environmental Systems Research Institute
380 New York Street
Redlands, CA 92373

Email: ehoel@esri.com

Abstract— Many scientific applications deal with spatial, spa-
tiotemporal and other multidimensional indexing structures,
typically managing millions of objects with arbitrary and com-
plex features. Choosing the appropriate method to index such
data becomes rather difficult. Having an index library that
can combine different indices under the same programming
interface is thus very valuable. In this paper we presentSaIL
(SpAtial Index Library), a robust and extensible library that
enables simple integration of spatial index structures in existing
applications. We mainly focus on design issues and elaborate
on techniques for making the framework generic enough, so
that it can support user defined data types, customizable spatial
queries, and a broad range of spatial (and spatio-temporal) index
structures. The library is publicly available and has already been
successfully utilized for research and commercial applications.

I. I NTRODUCTION

It is well recognized that a plethora of scientific and other
applications deal with spatial, spatiotemporal and generally
multidimensional data. Typically, such applications manage
millions of objects with arbitrary and complex spatial features.
Examples include GIS applications that manage maps with
numerous layers and hundreds of thousands of features [1],
astronomical applications like the SkyServer [2] indexing
millions of images, traffic analysis and surveillance applica-
tions that track numerous moving objects, and bioinformatics
applications about thousands of genes.

Usually, the end-user of such applications is interested in
analyzing a small fragment of the data at a time, issuing
various advanced spatial queries. The utility of spatial indexing
techniques for such applications has been well recognized;
complex queries can be answered efficiently only with the use
of such structures (e.g., nearest neighbor and top-k queries).
Consequently, many indexing techniques aiming at solving
disparate problems have appeared lately in the literature. Every
technique has its own advantages and disadvantages, being
suitable for different application domains or dataset types.
Therefore, choosing an appropriate access method for the
problem at hand is rather difficult. Hence, it becomes evident
that a spatial index library which can combine all index

This work was partially supported by NSF grants IIS-9907477, EIA-
9983445, IIS-0220148.

structures under a common application programming interface
would be very valuable to the user.

The major difficulty of such an undertaking is that most
index structures have diverse characteristics that distinguish
them. For example they may employ data or space partitioning,
they could have rectangular, spherical or other node types,
they are balanced or unbalanced, they index points, rectangles,
lines or other shapes, they can have arbitrary dimensionality,
etc. In addition, programmers should be able to use access
methods that can exploit the semantics of application-specific
data types by customizing existing structures, while making
sure that meaningful queries can be formulated easily for the
specific data types.

Moreover, it is vital to adopt a common design framework
in order to promote reusability and familiarity, especially
for large applications where many developers are involved.
The framework should capture the most important design
characteristics, common to most structures, into a concise
set of interfaces so that developers can concentrate on other
aspects of the development process. Its interface should be
easily extensible to address future needs without necessitating
revisions of client code.

These fundamental requirements make the design of a
generic spatial index framework a challenging task. Even
though there is a substantial volume of work on spa-
tial index structures and their properties, little work has
appeared that addresses design and implementation is-
sues. Towards this aim, this paper presentsSaIL, a spa-
tial index library that enables simple integration of spa-
tial and spatio-temporal index structures into existing ap-
plications. A sample implementation is publicly available
(http://www.cs.ucr.edu/∼marioh/spatialindex) and has been
used successfully for both research and commercial purposes
(e.g., UCR and ESRI). We proceed with a discussion of related
work, followed by a high-level description of SaIL.

II. RELATED WORK

The most relevant work to ours is XXL [5]. The eXtensible
and fleXible Library offers both low-level and high-level
components for development and integration of spatial index

2

Abstract class,

Abstract class

BA

B extends A

A B

implements AB inheritsB A

BA

A and B association

PD ATTERNESIGN

A B

Concrete class

In the figures:

Interface

In the text:

Interface, Concrete class,

Fig. 1. Notation used in the paper.

structures. Even though XXL is a superset of SaIL, it differs
in two major aspects. First, our implementation offers a very
concise, straightforward interface for querying different index
structures in a uniform manner. In contrast, XXL querying
interfaces are index specific. Second, we offer a more general-
ized querying capability. Despite the fact that XXL can support
a variety of advanced spatial queries, user defined queries
have to be implemented by hand requiring modifications in
all affected index structures. In contrast, we offer an intuitive
interface for formulating novel queries without having to revise
the library in any way.

GiST (for Generalized Search Tree[8]) is also relevant
to our work. GiST is a framework that generalizes a height
balanced, single rooted search tree with variable fanout. By
using a simple interface, GiST can support a wide variety
of search trees and their corresponding querying capabilities.
Various papers have been recently proposed to make GiST
more generic [3], [4].

Our work is orthogonal to GiST and its variants. GiST and
its extensions address the implementation issues behind new
access methods by removing the burden of writing structural
maintenance code from the developer. SaIL does not aim at
simplifying the development process of the index structures
themselves, but more importantly, the development of the
applications that use them.

III. SPATIAL INDEX L IBRARY ARCHITECTURE

In this section we present the Spatial Index Library in
more detail. We analyze the most important concepts behind
each design decision and give useful examples. Figure 1
summarizes the notation used in the text and diagrams. When
referring to specific design patterns we use the definitions in
Gamma et al. [6].

A. The Core Toolkit

This toolkit addresses very simple but essential needs for
any generic framework. It provides aVariant type for rep-
resenting a variety of different primitive types (like integers,
floats, character arrays, etc.), which is necessary for avoiding
hard coding specific primitive types in interface definitions
that might need to be modified at a later time. It offers a

PropertySet, or a collection of< PropertyName, V alue >
pairs. Property sets are useful for passing an indeterminate
number of parameters to a method, even after the interfaces
have been defined, without the need to extend them. It also
provides anExceptionclass hierarchy for promoting the use
of exception handling in client code, since failure of index
structure components is not a rare situation. Finally, it provides
other utility classes like external sorters, comparators, etc.,
details of which are omitted due to lack of space.

B. The Storage Manager Toolkit

An essential, critical part of spatial indexing tools is the
storage manager. It should be versatile, very efficient and
provide loose coupling. Clients that want to persist entities
should be unaware of the underlying mechanisms, in order
to achieve proper encapsulation. Persistence could be over
the network, on a disk drive, in a relational table, etc. All
mediums should be treated uniformly in client code, in order
to promote flexibility and facilitate the improvement of storage
management services as the system evolves.

The storage manager toolkit is shown in Figure 2. The key
abstraction is aMEMENTO pattern that allows loose coupling
between the objects that are persisted and the concrete im-
plementation of the actual storage manager. An object that
wants to store itself has to instantiate a concrete subclass of
Mementothat accurately represents its state. Then, it can pass
this instance to a component supporting theIStorageManager
interface, which will in turn return an identifier that can be
used to retrieve the object’s state at a later time.

The IBuffer interface provides basic buffering capabilities.
Using the classes that implementIBuffer is straightforward;
they act as a proxies between a storage manager and the client
that uses it, buffering entries as they see fit. Conveniently, the
client is unaware that buffering is taking place by assuming
that it is interfacing with a storage manager directly. This ar-
chitecture provides sufficient flexibility to even alter buffering
policies at runtime.

C. The Spatial Index Interface

Spatial access methods index complex spatial objects with
varying shapes. In order to make our interfaces generic it
is essential to have a basic shape abstraction that can also
represent composite shapes and other decorations (meta-data
like z-ordering, insertion time, etc.). We define theIShape
COMPOSITE pattern (Figure 3) as an interface that all index
structures should use to decouple their implementation from
actual concrete shapes. For example, inserting convex poly-
gons into an R-tree [7] can be accomplished by calling the
IShape.getMBR method to obtain the minimum bounding
region of the polygon. The R-tree can remain unaware of the
details of convex polygon representations. Complex shapes
can be represented by composing differentIShapesunder one
class. Hence, they can be handled uniformly.

Another important capability of a generic framework is
to provide a sound set of index elements (leaf and index
nodes, data elements, etc.) that enable consistent manipulation
of diverse access methods. For example, querying functions

3

. . .

loadMemento(long id, Memento&)

deleteMemento(long id)
storeMemento(long& id, const Memento&)

IStorageManager IBuffer

long getHits()
clear()

Buffer

addEntry(long id, const Memento&)
removeEntry()

capacity
buffer

Buffer(IStorageManager&, PropertySet&)

Memento

setState(long lenght, byte* data)
getState(long& length, byte** data)

MemoryStorage

HashMap

DiskStorage

PageFile LRUBuffer . . .

Fig. 2. The Storage Manager Toolkit.

bool isLeaf()

IShape

bool intersects(IShape&)
bool contains(IShape&)
bool touches(IShape&)
long getDimension()

. . .
double getMBR()

IEntry

long getIdentifier()
IShape* getShape()

IData

getData(long len, byte**)

INode

long getChildrenCount()
long getChildIdentifier(long)
IShape* getChildShape(long)
long getLevel()
bool isIndex()

Fig. 3. The IShape and Spatial Index Elements Interfaces.

should return iterators (i.e., enumerations or cursors) over
well-defined data elements, irrespective of what kind of struc-
tures they operate on. We achieve this by providing the
following hierarchy:IEntry is the most basic interface for a
spatial index entry; its members are an identifier and a shape.
INode (that inheritsIEntry) represents a generic tree node; its
members are the number of children it contains, its tree level,
and if it is an index or a leaf. TheIData interface represents
a data element; it contains the meta-data associated with the
entry or a pointer to the real data.

The core of the spatial index interface is theISpatialIn-
dex FACADE pattern. All index structures should implement
ISpatialIndex(apart from their own custom methods), which
abstracts the most common index operations. This interface is
as generic as possible.

The insertData method accepts the data object to be
inserted as anIShape, an interface that can be used as a simple
decorator over the actual object implementation. Meta-data
can also be stored along with the object as byte arrays. The
deleteData method is straightforward. It accepts theIShape
to be deleted and its object identifier.

The query methods take a queryIShapeas an argument.
This simple interface is powerful enough to allow the devel-
oper to create customized queries (this is one of the main
differences with XXL). For example, suppose a circular range
query on an R-tree is required. Internally, the R-tree search
algorithm decides if a node should be examined by calling
the queryintersects predicate on a node’s MBR. Hence, it
suffices to define aCircle class that implements theintersects
function (specific for intersections between circles and MBRs)
and call theintersectionQuery method with aCircle object
as its argument. Since arbitrarily complex shapes can be

defined with theIShape interface, the querying capabilities
of the index structures are only limited by the ability of the
developer to implement correctly the appropriate predicate
functions.

To be able to customize querying behavior even further
a V ISITOR pattern is used. TheIVisitor interface is a very
powerful feature (something that XXL does not provide). The
query caller can implement an appropriate visitor that executes
user defined operations when index entries are accessed. For
example, the visitor can ignore all node entries and cache all
visited data entries (essentially the answers to the query) for
later processing (like an enumeration). Instead, it could process
the answers interactively (like a cursor), terminating the search
when desired. Other useful examples are tallying the number
of query I/Os and visualizing the query progress. (A visitor
example is presented in the Appendix.)

The IShapeand IVisitor interfaces enable consistent and
straightforward query integration into client code, increas-
ing readability and extensibility. New index structures can
add specialized functionality by requesting decoratedIShape
objects (thus, without affecting the interfaces). TheIVisitor
interface allows existing visitor implementations to be reused
for querying different types of access methods and users can
customize visitors during runtime.

The nearest neighbor query method can be customized
even further. Since different applications use different distance
measures to find nearest neighbors, it accepts anINearest-
NeighborComparatorobject. By allowing the caller to provide
a customized comparator, the default nearest neighbor algo-
rithm implemented by the underlying structure can be used,
obviating any changes.

For implementing “exotic” queries, without the need to
make internal modifications to the library, aSTRATEGY

pattern is proposed (another advanced feature that XXL
is lacking). Using thequeryStrategy method the caller
can fully guide the traversal order and the operations per-
formed on a structure’s basic elements allowing, in effect,
the construction of custom querying algorithms on the fly.
This technique uses anIQueryStrategyobject for encap-
sulating the traversal algorithm. The index structure calls
IQueryStrategy.getNextEntry by starting the traversal from
a root and the IQueryStrategy object chooses which entry
should be accessed and returned next. The traversal can be
terminated when desired. As an example, assume that the user
wants to visualize all the index levels of an R-tree. Either the

4

. . .
INearestNeighborComparator

double getMinimumDistance(IShape&, IEntry&)

IVisitor

visitNode(INode&)
visitData(IData&)

IStatistics

long getReads()
long getWrites()
. . .

execute(INode&)

ICommand

IQueryStrategy

getNextEntry(IEntry&, long& nextID, bool& stop)

ISpatialIndex

insertData(long len, byte* data, IShape&, long id)
deleteData(IShape&, long id)
containmentQuery(IShape&, IVisitor&)
intersectionQuery(IShape&, IVisitor&)
pointLocationQuery(IShape&, IVisitor&)

INearestNeighborComparator&)
nearestNeighborQuery(long k, IShape&, IVisitor&,

queryStrategy(IQueryStrategy&)
addCommand(int event, ICommand&)
. . .

enum Commands
writeNodeCommand
readNodeCommand

Fig. 4. The Spatial Index Interface.

R-tree implementation should provide a custom tree traversal
method that returns all nodes one by one, or a query strategy
can be defined for the same purpose (which can actually be
reused as is, or maybe with slight modifications, for any other
hierarchical structure). An example of a breadth-first node
traversal algorithm is presented in the Appendix (the example
requires less than 15 lines of code). The possible uses of the
query strategy pattern are boundless.

Another capability that should be provided by most index
structures is allowing users to customize various index oper-
ations (usually by the use of call-back functions). The spatial
index interface uses aCOMMAND pattern for that purpose. It
declares theICommandinterface; objects implementingICom-
mandencapsulate user parametrized requests that can be run
on specific events, like customized alerts. All access methods
should provide a number of queues, each one corresponding
to different events that trigger each request. For example,
assume that we are implementing a new index structure. We
can augment the function that persists a node to storage with
an empty list ofICommandobjects. Using theaddCommand
method the user can add arbitrary command objects to this
list, that get executed whenever this function is called, by
specifying an appropriate event number (an enumeration is
provided for that purpose). Every time the function is called,
it iterates through theICommand objects in the list and
calls their execute method. TheCOMMAND pattern promotes
reusability, clarity, and ease of extensibility without the need
of subclassing or modifying the spatial index implementations
simply to customize a few internal operations as dictated by
user needs.

IV. CONCLUSIONS

We presented a robust and extensible spatial index devel-
oper’s framework. We argue that the proposed framework
will help developers incorporate spatial access methods with
greater ease into existing applications. The framework is based
on well documented design patterns that promote reusability
and improved code quality. The demo will include various
examples (like the Visitor and Query patterns in the Ap-
pendix) as well as examples on how the basic interface
can be used to integrated SaIL in an application. A sample
implementation in C++ and Java can be downloaded from
http://www.cs.ucr.edu/∼marioh/spatialindex.

REFERENCES

[1] ArcGIS. http://www.esri.com/software/arcgis/index.html.

[2] SkyServer. http://skyserver.sdss.org/dr1/en/.
[3] P. M. Aoki. Generalizing “search” in generalized search trees (extended

abstract). InProc. of International Conference on Data Engineering,
pages 380–389, 1998.

[4] W. G. Aref and I. F. Ilyas. An extensible index for spatial databases. In
Proc. of Scientific and Statistical Database Management, pages 49–58,
2001.

[5] J. Van den Bercken, B. Blohsfeld, J. Dittrich, J. Krämer, T. Scḧafer,
M. Schneider, and B. Seeger. XXL - a library approach to supporting
efficient implementations of advanced database queries. InProc. of Very
Large Data Bases, pages 39–48, 2001.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Pro-
fessional Computing Series. Addison-Wesley Publishing Company, New
York, NY, 1995.

[7] A. Guttman. R-trees: A dynamic index structure for spatial searching. In
Proc. of ACM Management of Data, pages 47–57, 1984.

[8] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized search trees
for database systems. InProc. of Very Large Data Bases, pages 562–573,
1995.

5

APPENDIX

A. Design Pattern Descriptions

MEMENTO: Without violating encapsulation, capture and
externalize an object’s internal state so that the object can be
restored to this state later.

PROXY: Provide a surrogate or place holder for another
object to control access to it.

COMPOSITE: Composite lets clients treat individual objects
and compositions of objects uniformly.

FACADE: Provide a unified interface to a set of interfaces
in a subsystem. Facade defines a higher-level interface that
makes the subsystem easier to use.

V ISITOR: Represent an operation to be performed on the
elements of an object structure. Visitor lets you define a new
operation without changing the classes of the elements on
which it operates.

STRATEGY: Define a family of algorithms, encapsulate
each one, and make them interchangeable.

COMMAND : Encapsulate a request as an object, thereby
letting you parameterize clients with different requests.

B. Visitor and Query Strategy Examples

TABLE I

IVisitor EXAMPLE.

class MyVisitor : public IVisitor {
public:

map<long, IShape*> answers;
long nodeAccesses;

MyVisitor() : nodeAccesses(0) {}

public visitNode(INode* n) {
nodeAccesses++;

}

public visitData(IData* d) {
// add the answer to the list.
answers[d.getIdentifier()] = d.getShape();

}
};

TABLE II

IQueryStrategyEXAMPLE.

class MyQueryStrategy
: public IQueryStrategy {

queue<long> ids;
public:

void getNextEntry(IEntry& e,
long& nextID, bool& stop) {

// process the entry.
. . .

// if it is an index entry and not a leaf
// add its children to the queue.
INode* n = dynamic_cast<INode*>(&e);
if (n != 0 && ! n->isLeaf)

for (long cChild = 0;
cChild < n->getChildrenCount();
cChild++)

ids.push(n->getChildIdentifier(cChild));

stop = true;
if (! ids.empty()) {

// if queue not empty fetch the next entry.
nextID = ids.front(); ids.pop();
stop = false;

}
}

};

