
Query-Sensitive Embeddings

Vassilis Athitsos

Boston University

Marios Hadjieleftheriou

AT&T Labs-Research

George Kollios

Boston University

and

Stan Sclaroff

Boston University

A common problem in many types of databases is retrieving the most similar matches to a query
object. Finding those matches in a large database can be too slow to be practical, especially
in domains where objects are compared using computationally expensive similarity (or distance)
measures. Embedding methods can significantly speed up retrieval by mapping objects into a
vector space, where distances can be measured rapidly using a Minkowski metric. In this paper
we present a novel way to improve embedding quality. In particular, we propose to construct
embeddings that use a “query-sensitive” distance measure for the target space of the embedding.
This distance measure is used to compare the vectors that the query and database objects are
mapped to. The term “query-sensitive” means that the distance measure changes depending on
the current query object. We demonstrate theoretically that using a query-sensitive distance mea-
sure increases the modeling power of embeddings and allows them to capture more of the structure
of the original space. We also demonstrate experimentally that query-sensitive embeddings can
significantly improve retrieval performance. In experiments with an image database of handwrit-
ten digits and a time-series database, the proposed method outperforms existing state-of-the-art
non-Euclidean indexing methods, meaning that it provides significantly better trade-offs between
efficiency and retrieval accuracy.

Categories and Subject Descriptors: H.3.1 [Content Analysis and Indexing]: Indexing meth-
ods; H.2.8 [Database Applications]: Data Mining; H.2.4 [Systems]: Multimedia Databases

Additional Key Words and Phrases: embedding methods, similarity matching, nearest neighbor
retrieval, non-Euclidean spaces, non-metric spaces.

1. INTRODUCTION

A common problem in many types of databases is retrieving the most similar
matches to a query object. Finding those matches in a large database can be

Contact author’s address: V. Athitsos, Boston University, Computer Science Department, 111
Cummington Street, Boston, MA 02215. Web page: http://cs-people.bu.edu/athitsos. E-mail:
athitsos@cs.bu.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20? ACM 1529-3785/20?/0700-0001 $5.00

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?, Pages 1–0??.

2 · Vassilis Athitsos et al.

too slow to be practical, especially in domains where objects are compared using
computationally expensive similarity (or distance) measures. Although numerous
indexing methods have been proposed for speeding up nearest-neighbor retrieval
[Böhm et al. 2001; White and Jain 1996], the majority of such methods typically
assume that we are operating in a Euclidean space, or a so-called “coordinate
space,” where each object is represented as a feature vector of fixed dimensions.
In many actual applications these assumptions are not obeyed, because we need
to use distance measures that are non-Euclidean and even non-metric, and be-
cause the objects are not of fixed dimensionality. Examples of computationally
expensive non-Euclidean distance measures include the Kullback-Leibler distance
for matching probability distributions, Dynamic Time Warping for matching time
series, bipartite matching for comparing two sets of features, or the edit distance
for matching strings and biological sequences. It is important to design efficient
methods for nearest neighbor retrieval in such spaces.

A number of methods for efficient retrieval in non-Euclidean spaces utilize em-
beddings, i.e., functions that map objects into a real vector space. These mappings
aim to preserve a large amount of the proximity structure of the original space,
so that nearby objects tend to get mapped to nearby vectors. Embeddings can
significantly speed up nearest neighbor retrieval when measuring distances between
vectors is faster than comparing objects in the original space. Comparing vectors
takes time linear to the dimensionality of the vectors, whereas non-Euclidean dis-
tance measures often have time complexity that is superlinear to the size of the
representation of the objects. For example, Dynamic Time Warping has quadratic
complexity and bipartite matching has cubic complexity.

For an embedding to be useful for nearest neighbor retrieval, the embedding
should tend to map near neighbors in the original space to near neighbors in the
target space. The more an embedding adheres to this requirement, the more useful
the embedding becomes for retrieval purposes. Retrieval performance is evaluated
in terms of accuracy and efficiency: we want to retrieve the true nearest neighbors
of the query as often as possible, and we want retrieval to be as fast as possible.

In this paper we present a novel way to improve embedding quality. In particular,
we propose to construct embeddings that use a “query-sensitive” distance measure
for the target space of the embedding. This distance measure is used to compare
the vectors that the query and database objects are mapped to. The term “query-
sensitive” means that the distance measure changes depending on the current query
object. More specifically, the query-sensitive distance measure is a weighted L1

distance measure where the weights automatically adjust to each query.

An important property of query-sensitive embeddings is that they combine the
efficiency of measuring L1 distances with the ability to capture non-metric struc-
ture present in the original space. In Sec. 3 we prove that for a wide range of finite
non-metric spaces we can construct isometric query-sensitive embeddings. Such
isometric embeddings can be achieved because a query-sensitive L1 distance mea-
sure is not constrained to be metric, and in particular it is not constrained to be
symmetric, or to obey the triangle inequality.

Regardless of whether the original space is metric or non-metric, a query-sensitive
distance measure can improve embedding quality by identifying, for each query

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

ACM Transactions on Database Systems · 3

object, the embedding dimensions that are the most informative for comparing
that object with database objects. Identifying the most informative dimensions is
an important issue that arises when objects are represented as high-dimensional
vectors [Aggarwal 2001], and addressing this issue can help in defining meaningful
high-dimensional distance measures. As demonstrated in the experimental results,
using a well-chosen set of dimensions for each query is more effective than simply
using all dimensions for all queries and assigning a fixed weight to each dimension.

In the experiments we compare query-sensitive embeddings to several alternative
methods for efficient nearest neighbor retrieval. In particular, we compare our
method to the original, query-insensitive BoostMap algorithm [Athitsos et al. 2004],
as well as to FastMap [Faloutsos and Lin 1995] and to VP-trees [Yianilos 1993].
Experiments are performed on two datasets: the MNIST database of handwritten
digits [LeCun et al. 1998], with shape context matching [Belongie et al. 2002] as
the underlying distance measure, and a time-series database [Vlachos et al. 2003]
with constrained Dynamic Time Warping as the underlying distance measure. In
both datasets, query-sensitive embeddings yield superior performance with respect
to the original BoostMap method, FastMap, and VP-trees. For a fixed budget
of exact distance computations per query, and for different integers k, the new
method correctly retrieves all k nearest neighbors for a significantly higher fraction
of queries. In additional experiments, we construct query-sensitive embeddings and
traditional, query-insensitive embeddings by minimizing embedding stress. In both
our datasets, query-sensitive embeddings achieve a smaller stress value on distances
between database objects and previously unseen queries.

2. RELATED WORK AND BACKGROUND

In this section we briefly survey existing methods for efficient nearest neighbor
retrieval in high-dimensional and non-Euclidean spaces. The reader can refer to
[Böhm et al. 2001; Hjaltason and Samet 2003b; White and Jain 1996] for com-
prehensive reviews of existing nearest neighbor methods. We also provide some
background on existing embedding methods; for a good introduction to embedding-
based nearest neighbor methods we recommend [Hjaltason and Samet 2003a].

2.1 Related Work

A large amount of literature has addressed the topic of efficient nearest neigh-
bor retrieval. Many methods explicitly target Euclidean and vector spaces, e.g.,
[Chakrabarti and Mehrotra 2000; Sakurai et al. 2000; Weber et al. 1998; Gionis
et al. 1999; Li et al. 2002; Egecioglu and Ferhatosmanoglu 2000; Kanth et al. 1998;
Weber and Böhm 2000; Koudas et al. 2004]. Such methods are not applicable in
non-Euclidean spaces with computationally expensive distance measures, which is
a main focus of this paper. One family of methods that can be applied in such
spaces are tree-based methods [Yianilos 1993; Bozkaya and Özsoyoglu 1999; Traina
et al. 2000; Zezula et al. 1998]. In VP-trees [Yianilos 1993] the distance between
the query object and selected database objects called “pivot points” is used to
prune out partitions of the database, based on the triangle inequality. This idea is
extended in [Bozkaya and Özsoyoglu 1999] to multiple vantage point trees. Both
methods are exact, i.e., they guarantee retrieval of the true nearest neighbor(s),
provided that the underlying distance measure is metric. An approximate method

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

4 · Vassilis Athitsos et al.

using M-trees is described in [Zezula et al. 1998].

The methods in [Bozkaya and Özsoyoglu 1999; Yianilos 1993; Zezula et al. 1998]
are based on metric properties. Designing general indexing methods for non-metric
spaces is a much harder task, and various techniques use domain-specific properties
in order to provide efficient indexing for specific domains. Several methods address
the problem of robust evaluation of similarity queries on time-series databases when
using non-metric distance functions [Keogh 2002; Vlachos et al. 2003; Yi et al.
1998]. These techniques use the filter-and-refine approach, where a computationally
efficient approximation of the original distance is utilized in the filtering step. Query
speedup is achieved by pruning a large part of the search space at the filter step.
Then, the original, accurate but more expensive distance measure is applied to
the few remaining candidates, during the refinement step. In our experimental
evaluation we compare our approach with the technique presented in [Vlachos et al.
2003]. Also related to our setting is work on distance-based indexing for string
similarity. In [Sahinalp et al. 2003] special modifications to distance-based indices
[Bozkaya and Özsoyoglu 1999; Traina et al. 2000; Yianilos 1993] are proposed for
indexing distance functions that are almost metric, meaning that they satisfy the
triangle inequality up to a constant. Pruning criteria that are based on the triangle
inequality are adapted in [Sahinalp et al. 2003] to work with the relaxed version of
the triangle inequality.

In domains where the distance measure is computationally expensive, significant
computational savings can be obtained by constructing a distance-approximating
embedding, which maps objects into another space with a more efficient distance
measure. A number of methods have been proposed for embedding arbitrary spaces
into a real vector space [Athitsos et al. 2004; Bourgain 1985; Faloutsos and Lin 1995;
Hristescu and Farach-Colton 1999; Roweis and Saul 2000; Tenenbaum et al. 2000;
Wang et al. 2000; Young and Hamer 1987]. Some of these methods, in particular
MDS [Young and Hamer 1987], Bourgain embeddings [Bourgain 1985; Hjaltason
and Samet 2003a], LLE [Roweis and Saul 2000] and Isomap [Tenenbaum et al.
2000] are not targeted at speeding up online similarity retrieval, because they still
need to evaluate exact distances between the query and most or all database ob-
jects. Online queries can be efficiently handled by Lipschitz embeddings [Hjaltason
and Samet 2003a], FastMap [Faloutsos and Lin 1995], MetricMap [Wang et al.
2000], SparseMap [Hristescu and Farach-Colton 1999], and BoostMap [Athitsos
et al. 2004].

In Lipschitz embeddings [Hjaltason and Samet 2003a] each coordinate of an ob-
ject’s embedding is set to the smallest distance between that object and a sub-
set of database objects. Bourgain embeddings [Bourgain 1985] are a special case
of Lipschitz embeddings. While Bourgain embeddings are not designed for near-
est neighbor retrieval, SparseMap [Hristescu and Farach-Colton 1999] provides an
approximation of Bourgain embeddings that is explicitly designed for efficient re-
trieval. FastMap [Faloutsos and Lin 1995] and MetricMap [Wang et al. 2000] define
embeddings using formulas that, in Euclidean spaces, approximately correspond to
PCA or SVD. BoostMap [Athitsos et al. 2004] uses as building blocks simple, one-
dimensional (1D) embeddings, and combines them in an optimized high dimensional
embedding using machine learning.

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

ACM Transactions on Database Systems · 5

Existing embedding methods typically assume that the original space has either
Euclidean properties [Faloutsos and Lin 1995; Wang et al. 2000] or metric prop-
erties [Hristescu and Farach-Colton 1999]. While those methods can be applied
to arbitrary spaces, applying such methods to spaces that violate those underly-
ing assumptions is inherently heuristic. The BoostMap method [Athitsos et al.
2004] explicitly maximizes the amount of similarity structure preserved by the em-
bedding, and the optimization algorithm does not rely on any metric properties.
Nevertheless, like the methods in [Faloutsos and Lin 1995; Hristescu and Farach-
Colton 1999; Wang et al. 2000], BoostMap maps objects into an metric Lp space.
When the original space is non-metric, an embedding to a metric space cannot
preserve any non-metric structure, such as violations of symmetry or the trian-
gle inequality. Query-sensitive embeddings overcome that limitation, because the
distance measure used for comparing vectors is not constrained to be metric.

Another important limitation of existing embedding methods is that they com-
pare vectors using global Lp distance measures, where each dimension of the embed-
ding is assigned a fixed weight. In contrast, query-sensitive embeddings automat-
ically adjust the importance of each dimension depending on the objects that are
being compared. Non-global distance measures have also been proposed in [Paredes
and Vidal 2000; Domeniconi et al. 2002; Hastie and Tibshirani 1996; Hinneburg
et al. 2000]. However, those methods have been designed to solve different problems
than the problem of efficient nearest neighbor retrieval that we target in this pa-
per. The methods in [Paredes and Vidal 2000; Domeniconi et al. 2002; Hastie and
Tibshirani 1996] optimize nearest neighbor classification accuracy, while in [Hinneb-
urg et al. 2000] query-sensitive distances are optimized based on an unsupervised
criterion of distance quality.

This paper is an extended version of [Athitsos et al. 2005], which introduced
query-sensitive embeddings for nearest neighbor retrieval. As in [Athitsos et al.
2005], the embedding construction algorithm is an adaptation of the BoostMap
algorithm [Athitsos et al. 2004] to the problem of query-sensitive embedding con-
struction. In this paper we describe for the first time some key theoretical properties
of query-sensitive embeddings, including contractiveness in metric spaces, and the
ability to preserve non-metric structure of the original space. We also describe
a method for significantly speeding up the embedding construction algorithm, by
sampling the training set, and we introduce an algorithm for constructing query-
sensitive embeddings so as to minimize embedding stress. Another related work is
[Athitsos et al. 2005], where we describe how to speed up nearest neighbor classifi-
cation using a cascade of embedding-based approximate nearest neighbor classifiers.
The cascade method can be applied on top of any embedding-based nearest neigh-
bor retrieval method, including the method proposed in this paper, but also the
methods in [Athitsos et al. 2004; Faloutsos and Lin 1995; Hristescu and Farach-
Colton 1999; Wang et al. 2000].

2.2 Background

We use X to denote a set of objects, and DX to denote a distance measure defined
on X . For example, X can be a set of images of handwritten digits, and DX can
be shape context matching as defined in [Belongie et al. 2002]. However, any X
and DX can be used in the formulations described in this paper.

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

6 · Vassilis Athitsos et al.

Fig. 1. An embedding F r of five 2D points into the real line, using r as the reference
object. The target of each 2D point on the line is labeled with the same letter as the 2D
point.

2.2.1 Some Simple Embeddings. An embedding F : X → R
d is a function that

maps any object x ∈ X into a d-dimensional vector F (x) ∈ R
d. Distances in R

d are
measured using the Euclidean (L2) metric, or some other Lp metric. It is assumed
that measuring a single Lp distance between two vectors is significantly faster than
measuring a single distance DX between two objects of X . This assumption is
obeyed in the example datasets we used in our experiments. For example, with our
PC we can measure close to a million L1 distances between vectors in R

100 in one
second, whereas only 15 shape context distances can be evaluated per second.

A simple way to define one-dimensional (1D) embeddings is using prototypes
[Hjaltason and Samet 2003a]. In particular, given an object r ∈ X , we can define
an embedding F r : X → R as follows:

F r(x) = DX(x, r) . (1)

We call embeddings of type F r reference-object embeddings. The prototype r that is
used to define F r is typically called a reference object or a vantage object [Hjaltason
and Samet 2003a]. Fig. 1 illustrates an example of such an embedding.

In order to preserve more structure from the original space, we can use multiple
reference objects to define a multidimensional embedding. For example, using d
reference objects we obtain a d-dimensional embedding:

F r1,...,rd(x) = (F r1(x), . . . , F rd(x)) . (2)

If x1 and x2 are far from each other, they are typically less likely to be mapped
close to each other using such a multidimensional embedding than using a simple
1D embedding F r.

Another family of simple 1D embeddings, for which we use the term line projec-

tion embeddings, is proposed in [Faloutsos and Lin 1995]. The idea is to choose two
objects x1, x2 ∈ X , called pivot objects, and then, given an arbitrary x ∈ X , to
define the embedding F x1,x2 of x to be the projection of x onto the “line” x1x2:

F x1,x2(x) =
DX(x, x1)

2 + DX(x1, x2)
2 − DX(x, x2)

2

2DX(x1, x2)
. (3)

The reader can find in [Faloutsos and Lin 1995] an intuitive geometric interpre-
tation of this equation, based on the Pythagorean theorem. In a manner similar
to Equation 2, one can define a d-dimensional embedding by concatenating d 1D
line projection embeddings. FastMap [Faloutsos and Lin 1995] is a more elaborate

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

ACM Transactions on Database Systems · 7

method for creating a multidimensional embedding using line projection embed-
dings as building blocks.

2.2.2 Filter-and-refine Retrieval. In applications where we are interested in re-
trieving the k nearest neighbors for a query object q, a d-dimensional embedding
F can be used in a filter-and-refine framework [Hjaltason and Samet 2003a], as
follows: first, we perform an offline preprocessing step, in which we compute and
store vector F (x) for every database object x. Then, given a previously unseen
query object q, we perform the following three steps:

—Embedding step: compute F (q), by measuring the distances between q and the
reference objects and/or pivot objects used to define F .

—Filter step: Find the database objects whose associated vectors are the p most
similar vectors to F (q).

—Refine step: sort those p candidates by evaluating the exact distance DX between
q and each candidate.

The assumption is that distance measure DX is computationally expensive and
evaluating distances between vectors is much faster. The filter step discards most
database objects by measuring distances between vectors. The refine step applies
DX only to the top p candidates. The best choice of parameters p and d (embedding
dimensionality) will depend on domain-specific parameters like k (i.e., how many
of the nearest neighbors of an object we want to retrieve), the time it takes to
compute the distance DX , the time it takes to compare d-dimensional vectors, and
the desired retrieval accuracy (i.e., how often we are willing to miss some of the
true k nearest neighbors).

3. MOTIVATION FOR QUERY-SENSITIVE DISTANCE MEASURES

There exist several methods for constructing high-dimensional embeddings, e.g.,
FastMap [Faloutsos and Lin 1995], BoostMap [Athitsos et al. 2004], or simply using
Equation 2 with randomly chosen reference objects. Each method uses a different
technique in order to capture as much as possible of the structure of the original
space X . However, existing methods have limited themselves to the task of assign-
ing a vector of coordinates to each object. These vectors are often compared using
the standard Euclidean distance without weights [Faloutsos and Lin 1995; Hris-
tescu and Farach-Colton 1999]. BoostMap uses an L1 metric and assigns weights
to each dimension, but its representational power is still equivalent to that of a
method using an unweighted distance: any weighted L1 metric can be isometrically
converted to an unweighted L1, by simple scaling of each dimension.

Query-sensitive embeddings are embeddings into a vector space with a query-
sensitive distance measure, i.e., a measure where the weight of each dimension
depends on the query. Using a query-sensitive distance measure enhances the mod-
eling power of embeddings and overcomes certain limitations of standard embedding
methods that use global distance measures. For example, while any finite metric
space can be isometrically embedded into an L∞ space, non-metric spaces clearly
cannot be isometrically embedded into metric Lp spaces, since isometry preserves
violations of metric properties. It is also well-known that some finite metric spaces

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

8 · Vassilis Athitsos et al.

X cannot be embedded to a Euclidean (L2) space with better than O(log |X |) dis-
tortion, where |X | is the number of objects in X [Hjaltason and Samet 2003a].
Using query-sensitive embeddings, on the other hand, we can isometrically embed
into a real vector space any finite metric space, and any finite non-metric space
with a reflexive distance measure.

Proposition 1. For any finite space X with a reflexive distance measure DX

there exists a query-sensitive isometric embedding to R
|X|, i.e., the real vector space

of dimension |X |.

Proof:

Since X is finite, it can be represented as X = {x1, . . . , x|X|} so that for any i, k,
xi = xk iff i = k. Then, since DX is reflexive, it follows that DX(xi, xk) = 0 iff
i = k.

We will explicitly construct an isometric embedding F and the associated query-
sensitive distance measure D. By definition, F is isometric if the following holds:
for any xi, xj ∈ X , DX(xi, xj) = D(F (xi), F (xj)). We define F as follows:

F (x) = (DX(x1, x), DX (x2, x), . . . , DX(x|X|, x)) . (4)

Now, we define an auxiliary function S(y) : R → {0, 1}:

S(y) =

{

1 if y = 0 .
0 otherwise .

(5)

Finally, if u, v ∈ R
|X|, u = (u1, . . . , u|X|) and v = (v1, . . . , v|X|), we define distance

measure D(u, v):

D(u, v) =

|X|
∑

k=1

(S(uk)|uk − vk|) . (6)

Since reflexivity holds, DX(xi, xk) = 0 iff i = k. Therefore, the k-th coordinate
of F (xi), which is equal to DX(xi, xk), is zero iff i = k. Therefore, it is trivial to
verify that D(F (xi), F (xj)) = DX(xi, xj).

2

Distance measure D is query-sensitive: assuming that vector u in Eq. 6 is the
embedding F (q) of a query object q ∈ X , the weight assigned to the k-th dimension
depends on whether the embedding of the query has a zero or non-zero value at that
dimension. Clearly, the isometric construction we have described is not really useful
in the context of nearest neighbor retrieval, where typically we cannot assume that
the query object is identical to a database object, or to a reference object used in the
embedding. Furthermore, the proof entails a certain amount of “cheating,” since
our construction essentially boils down to defining, for each query xi, a custom-
made embedding that uses xi as a reference object. However, the mere fact that
query-sensitive embeddings allow this kind of “cheating” illustrates the additional
modeling power we gain by query-sensitivity: no such trick can be used with a
query-insensitive Lp metric.

At the same time, Proposition 1 can be used to demonstrate an important prop-
erty of query-sensitive embeddings: the ability to capture non-metric structure.

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

ACM Transactions on Database Systems · 9

Fig. 2. An example (reprinted with permission from [Jacobs et al. 2000]) of non-metric
similarity structure. Under both human notions of similarity and the k-median Hausdorff
distance, the centaur is considered to be very similar to both the man and the horse,
whereas the man and the horse are considered to be dissimilar.

The only metric property used in the proof of Proposition 1 is reflexivity. Symme-
try and the triangle inequality were not used, and therefore the proof applies also
to any space with a reflexive non-metric distance measure. The fact that we can
isometrically embed non-metric spaces into a vector space with a query-sensitive
distance measure demonstrates that such query-sensitive distance measures are not
constrained to be metric. Therefore, embeddings with query-sensitive distance mea-
sures can map objects into vectors while preserving violations of metric properties
such as symmetry or the triangle inequality.

The ability to capture non-metric structure is an important advantage of query-
sensitive embeddings. Other existing embedding methods typically map objects
into a vector space with a global Lp metric, and thus are inherently unable to
preserve non-metric structure. At the same time, non-metric distance measures are
frequently used in many domains, including pattern recognition and data mining.
Examples of non-metric distance measures are shape context matching [Belongie
et al. 2002], Dynamic Time Warping [Kruskall and Liberman 1983], the chamfer
distance [Barrow et al. 1977], and the k-median Hausdorff distance [Huttenlocher
et al. 1993]. Such non-metric measures often agree with human perceptions of
similarity. For example, given pictures of a man, a horse and a centaur (Fig. 2),
humans tend to find the centaur similar to both the man and the horse, whereas
the man and the horse are rated as dissimilar [Jacobs et al. 2000]. The k-median
Hausdorff distance reproduces that result, by providing a small distance for the
centaur-man and centaur-horse pairs, and a large distance (greater than the sum
of the centaur-man and centaur-horse distances) for the man-horse pair. Mapping
such objects into a metric space would fail to preserve that structure, by forcing
the distance between the man and the horse to be not larger than the sum of
distances between the centaur and the man and between the man and the horse.
Query-sensitive embeddings, on the other hand, can naturally preserve this type of
non-metric structure.

Another property of query-sensitive embeddings is that they can assign, given a
query object, different weights to different dimensions, favoring dimensions that are
more informative for that query object. This property can be useful regardless of
whether the original space is metric or non-metric. Fig. 3 illustrates a quantitative

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

10 · Vassilis Athitsos et al.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

database points
reference points
query points

2r

3r

r1

q
1

q2

q 3

Fig. 3. A toy example illustrating the use of query-sensitive embeddings. The original
space is the set of points in the plane. We define a 3D embedding using reference objects
r1, r2, r3. As explained in the text, assigning query-sensitive weights to each embedding
dimension would improve the accuracy of the embedding for queries q1, q2, q3.

example. In that toy example, we define a three-dimensional embedding F of the
plane. There are twenty database objects, three of which (indicated as r1, r2, r3)
are selected as reference objects. Using these reference objects, we define embed-
ding F (x) = (F r1(x), F r2 (x), F r3(x)), and we use the L1 distance to compare the
embeddings of two objects. There are ten query objects, three of which are marked
as q1, q2, q3, and there are 3800 triples (q, a, b) we can form by picking q from the
query objects, and the pair a, b from the database objects.

To evaluate embedding quality we consider, as in [Athitsos et al. 2004], that F
fails on triple (q, a, b) if either: q is closer to a than to b and F (q) is closer to
F (b) than to F (a), or: q is closer to b than to a and F (q) is closer to F (a) than
to F (b). Embedding F fails on 23.5% of the the 3800 triples. In contrast, the
1D embeddings F r1 , F r2 , F r3 perform worse than F , since they fail respectively
on 39.2%, 36.4%, and 26.6% of the triples. However, if we restrict our attention
to triples (q, a, b) where q = q1, then F r1 does better than F : F r1 fails on 5.8%
of those triples, whereas F fails on 11.6% of those triples. Similarly, for q = q2

and q = q3 respectively, F r2 and F r3 are more accurate than F . Therefore, for
query objects q1, q2, q3, it would be beneficial to use a query-sensitive weighted L1

measure, that would respectively use only the first, second, and third dimension of
F .

Overall, we have seen that query-sensitive distance measures provide us with
the modeling power to preserve non-metric structure, and to capture the fact that
different dimensions are more important for different queries.

4. CONSTRUCTING A QUERY-SENSITIVE EMBEDDING

We now describe a method for constructing query-sensitive embeddings for the
purposes of approximate nearest neighbor retrieval. The method is based on the

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

ACM Transactions on Database Systems · 11

BoostMap algorithm [Athitsos et al. 2004; Athitsos 2006], and modifies that algo-
rithm in order to produce a query-sensitive distance measure.

4.1 Associating Embeddings with Classifiers

Any F acts as a classifier for the following binary classification problem: given three
objects q, a, b ∈ X , is q closer to a or to b? If we know F , but we do not know
the exact distances DX(q, a) and DX(q, b), we can provide an answer by simply
checking if F (q) is closer to F (a) or to F (b). If the answer we obtain using F is
wrong, we say that F fails on triple (q, a, b) [Athitsos 2006].

Let kmax be the maximum number of nearest neighbors we may want to retrieve
for any query object. Our goal then is to construct an embedding F that preserves
the kmax-nearest neighbor structure of X as well as possible. Let U ⊂ X be the
set of database objects, and let Tkmax

be the set of triples (q, a, b) such that q ∈ X ,
a, b ∈ U and a is a k-nearest neighbor of q. If F never fails on such triples, then, F
maps the kmax-nearest neighbors of q in U to the kmax-nearest neighbors of F (q) in
F (U), and thus F perfectly preserves kmax-nearest neighbor structure. The fraction
of triples in Tkmax

on which F does not fail is a quantitative measure of how well
F preserves kmax-nearest neighbor structure [Athitsos et al. 2005; Athitsos 2006].
Consequently, we want to construct F in a way that minimizes its failure rate on
the set Tkmax

.
Simple 1D embeddings, that are defined for example using reference objects or

“line projections”, are expected to act as weak classifiers [Athitsos 2006; Schapire
and Singer 1999], i.e., they will probably have a high error rate, but at the same time
they should provide answers that are, on average, more accurate than a random
guess, which would have an error rate of 50%. The key insight in the BoostMap al-
gorithm [Athitsos et al. 2004; Athitsos 2006] is that, by associating embeddings with
classifiers, we can reduce the problem of embedding construction to the problem of
combining many weak classifiers into a strong classifier. A well-known and widely
used solution to the latter problem is the AdaBoost algorithm [Schapire and Singer
1999]. The BoostMap algorithm uses AdaBoost to construct a high-dimensional
embedding out of 1D embeddings of type F r and F x1,x2 .

At a high level, our embedding construction method is an adaptation of the
BoostMap algorithm and consists of the following steps:

(1) We start by specifying a large family of 1D embeddings, using well-known
definitions from prior embedding methods.

(2) We use 1D embeddings to define binary classifiers, which estimate for object
triples (q, a, b) if q is closer to a or to b.

(3) We use AdaBoost to combine many classifiers into a single classifier H , which
we expect to be significantly more accurate than the simple classifiers associated
with 1D embeddings.

(4) We use H to define a d-dimensional embedding Fout, and a query-sensitive
weighted L1 distance measure Dout.

In order to produce a query-sensitive embedding, the adapted BoostMap algo-
rithm described in this section differs from the original BoostMap algorithm of

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

12 · Vassilis Athitsos et al.

[Athitsos et al. 2004; Athitsos 2006] in steps 2,3, and 4, as explained in the remain-
der of this section.

4.2 Defining Query-Sensitive Classifiers from 1D Embeddings

As described earlier, every embedding F corresponds to a classifier that classifies
triples (q, a, b) of objects in X . Formally, we can say that a triple (q, a, b) is of type
1 if q is closer to a than to b, type 0 if q is equally close to a and b, and type -1
if q is closer to b than to a. Given embedding F , and a distance measure D for
comparing vectors, we define the classifier F̃ associated with embedding F :

F̃ (q, a, b) = D(F (q), F (b)) − D(F (q), F (a)) . (7)

The sign of F̃ (q, a, b) is an estimate of whether triple (q, a, b) is of type 1, 0, or -1.
We should note that, if F is a 1D embedding and D is an Lp distance measure

(where p > 0), then F̃ (q, a, b) = |F (q) − F (b)| − |F (q) − F (a)|.
Sometimes, F̃ may do a really good job on triples (q, a, b) when q is in a specific

region, but at the same time it may be beneficial to ignore F̃ when q is outside
that region. For example, suppose that we have an embedding F r defined using
reference object r. If q = r, then F̃ r will classify correctly all triples (q, a, b), where
a and b are any two objects of space X . If q 6= r, we still expect that, the closer q
is to r, the more accurate F̃ r will be on triples (q, a, b), as illustrated in Fig. 3.

In [Athitsos et al. 2004], the weak classifiers that are used by AdaBoost are of
type F̃ , with F being a 1D embedding. We propose to use a different type of
classifier, that can explicitly model the fact that an 1D embedding F can be more
useful in some regions of the space and less useful in other regions.

In particular, given a 1D embedding F , we need a function S(q) (which we call
a splitter), that will estimate, given a query q, whether classifier F̃ is useful or not.
More formally, if X is the original space, we use the term splitter to denote any
function mapping X to the binary set {0, 1}. We can readily define splitters using
1D embeddings. Given a 1D embedding F : X → R, and a subset V ⊂ R, we can
define a splitter SF,V : X → {0, 1}, and a query-sensitive classifier Q̃F,V : X3 → R

as follows:

SF,V (q) =

{

1 if F (q) ∈ V .
0 otherwise .

(8)

Q̃F,V (q, a, b) = SF,V (q)F̃ (q, a, b) . (9)

At an intuitive level, F̃ is by itself a classifier of triples (q, a, b). Q̃F,V is a cropped

version of F̃ , that gives 0 (i.e., a neutral result) whenever F (q) /∈ V . For example,
if F = F r for some reference object r, and V = [0, τ] for some positive threshold
τ , splitter SF,V (q) accepts object q if it is within distance τ of r. Therefore, the

query-sensitive classifier Q̃F,V will apply F̃ only if q is sufficiently close to r. By

choosing τ in an appropriate way, we can capture the fact that F̃ should only be
applied to objects within a specified distance from reference object r.

4.3 The Training Algorithm

The AdaBoost algorithm (taken, with minor modifications, from [Schapire and
Singer 1999]) is shown in Fig. 4. AdaBoost assumes that we have a “weak learner”

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

ACM Transactions on Database Systems · 13

Given: (o1, y1), . . . , (ot, yt); oi ∈ G, yi ∈ {−1, 1}.
Initialize wi,1 = 1

t
, for i = 1, . . . , t.

For j = 1, . . . , J :

(1) Train weak learner using training weights wi,j .

(2) Get weak classifier hj : G → R.

(3) Choose αj ∈ R.

(4) Set training weights wi,j+1 for the next round as follows:

wi,j+1 =
wi,j exp(−αjyihj(xi))

zj

. (10)

where zj is a normalization factor (chosen so that
Pt

i=1 wi,j+1 = 1).

Output the final classifier:

H(x) =
J

X

j=1

αjhj(x). (11)

Fig. 4. The AdaBoost algorithm. This description is largely copied from [Schapire and
Singer 1999].

module, which we can call at each round to obtain a new weak classifier. The
output of AdaBoost is a “strong classifier,” which is a linear combination of the
weak classifiers chosen at each round. The goal is to construct a linear combination
that achieves much higher accuracy than the individual weak classifiers.

In our case, the AdaBoost algorithm is used to construct a classifier that operates
on triples of objects. As stated in Sec. 4.1, our goal is to minimize the classification
error rate on the set Tkmax

of triples (q, a, b) such that q ∈ X , a, b ∈ U are database
objects, and a is a kmax-nearest neighbor of q. Therefore, in principle, the training
triples oi = (qi, ai, bi) should be sampled from Tkmax

. However, to do that we need
to compute distances from a large set of possible queries q to all objects in U . For
efficiency reasons, we choose training triples from a subset Xtr ⊂ U . We choose
triples (q, a, b) such that q, a, b ∈ Xtr, and a is a k1-nearest neighbor of q in Xtr,

where k1 = kmax
|Xtr|
|U | [Athitsos et al. 2005]. The i-th training triple (qi, ai, bi) is

associated with a class label yi, which is 1 if qi is closer to ai and -1 if qi is closer
to bi.

We use the same process to also choose a set of validation triples from a set
Xval ⊂ U of the same size as Xtr and disjoint from Xtr. Validation triples are used
for deciding when to stop training, as described later.

To create a pool of 1D embeddings/weak classifiers, we need to specify a set C ⊂
U of candidate objects. Elements of C will be used as reference objects and pivot
objects to define 1D embeddings of type F r and F x1,x2 . We need to precompute a
matrix of distances between any two objects in C, and a matrix of distances from
each c ∈ C to each qi, ai and bi appearing in one of the training triples.

The weak classifiers considered in steps 1 and 2 of Fig. 4 are classifiers Q̃F,V as
defined in Eq. 9, where F is some 1D embedding defined using reference objects
or pivot objects from the set C of candidate objects. To pick a range V for Q̃F,V ,
we simply compute the values F (x) for every object appearing in a training triple
(qi, ai, bi), and set V to be a random interval of R containing some of those values.

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

14 · Vassilis Athitsos et al.

We form many such ranges V for each F , and for each range we measure the training
error, i.e., the classification error of classifier Q̃F,V , on the training triples. When
we measure the training error, we weigh each training triple oi by the current weight
wi,j of that triple in training round j. Therefore, the error of Q̃F,V will be different
at each training round.

At training round j we choose, randomly, a large number of 1D embeddings.
For each selected 1D embedding F we find the range VF,j that achieves the lowest
training error at round j. The next classifier will be chosen among the classifiers
Q̃F,VF,j

. The function Zj(Q̃, α) gives a measure of how useful it would be to choose

hj = Q̃ and αj = α at training round j:

Zj(Q̃, α) =

t
∑

i=1

(wi,j exp(−αyiQ̃(qi, ai, bi))) . (12)

The full details of the significance of Zj can be found in [Schapire and Singer 1999].

Here it suffices to say that the lower Zj(Q̃, α) is, the more beneficial it is to choose

hj = Q̃ and αj = α.
Now we are ready to specify how to implement steps 1 − 3 in Fig. 4, for each

training round j = 1, . . . , J . In step 1 we find the optimal α for each weak classifier
Q̃F,VF,j

. Then, in steps 2 and 3 we set hj and αj respectively to be the weak classifier
and weight that yielded the lowest overall value of Zj . An optional setting, that
we use in our experiments, is to constrain each αj to be non-negative. This allows
the resulting embedding to be contractive [Hjaltason and Samet 2003a] in metric
spaces, as discussed in Sec. 5.4.

The training algorithm stops if either of two conditions is satisfied:

—We have reached a specified maximum number of training rounds.

—The error rate of the classifier on the validation triples has not improved during
a specified number of training rounds.

4.3.1 Training Output: Embedding and Distance. The output of the training
stage is a classifier H of the following form:

H =

J
∑

j=1

αjQ̃F ′

j
,Vj

. (13)

Each Q̃F ′

j
,Vj

is associated with a 1D embedding F ′
j . Classifier H has been trained to

estimate, for triples of objects (q, a, b), if q is closer to a or to b. However, our goal
is to actually construct not just a classifier of triples of objects, but an embedding.
Here we discuss how to define such an embedding Fout, and an associated distance
measure Dout to be used to compare vectors.

A particular 1D embedding F may have been selected at multiple training rounds,
and thus it can be equal to multiple F ′

j ’s occurring in the definition of classifier H .

We construct the set F of all unique 1D embeddings used in H , as F =
⋃J

j=1{F
′
j},

and we denote the elements of F as F1, . . . , Fd. It is important to distinguish
between notation Fi, for elements of F, and notation F ′

i , for embeddings appearing
in Eq. 13.

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

ACM Transactions on Database Systems · 15

The embedding Fout : X → R
d is defined as follows:

Fout(x) = (F1(x), . . . , Fd(x)). (14)

Obviously, it is a d-dimensional embedding. We note here that dimensionality d
is equal to the number of unique embeddings Fj , and not to J , which is the total
number of training rounds performed by AdaBoost.

Before defining distance measure Dout, we first need to define an auxiliary func-
tion Ai(q), which assigns a weight to the i-th dimension, for i = 1, . . . , d:

Ai(q) =
∑

j:((j∈{1,...,J})∧(Fi=F ′

j
)∧(Fi(q)∈Vj))

αj . (15)

In words, given object q, for dimension i, we go through all weak classifiers Q̃F ′

j
,Vj

that make up H . For each such classifier, we check if the splitter SF ′

j
,Vj

accepts q

(i.e., we check if F ′
j(q) ∈ Vj), and we also check if F ′

j = Fi. If those conditions are
satisfied, we add the weight αj to Ai(q).

Let Fout(q) = (q1, ..., qd), and let x be some other object in X , with Fout(x) =
(x1, ..., xd). We define distance Dout as follows:

Dout((q1, ..., qd), (x1, ..., xd)) =
d

∑

i=1

(Ai(q)|qi − xi|) . (16)

Dout(v1, v2) (where v1, v2 are d-dimensional vectors) is like a weighted L1 measure
on R

d, but the weights depend on v1. Therefore Dout(v1, v2) is not symmetric, and
not a metric. We say that Dout(v1, v2) is a query-sensitive distance measure, since
v1 is typically the embedding of a query, and v2 is the embedding of a database
object that we want to compare to the query.

It is important to note that the way we defined Fout and Dout, if we apply Eq.
7 to obtain a classifier F̃out from Fout (with D set to Dout), then F̃out = H (the
proof can be found in [Athitsos et al. 2005]). In words, the classifier corresponding
to embedding Fout is equal to the output of AdaBoost. This equivalence is impor-
tant, because it shows that the quantity optimized by the training algorithm (i.e.,
classification error on triples of objects) is not only a property of the classifier H
constructed by AdaBoost, but it is also a property of the embedding Fout, when
coupled with query-sensitive distance measure Dout.

5. PROPERTIES AND DISCUSSION OF THE METHOD

In this section we take a closer look at some properties of query-sensitive embed-
dings and the proposed algorithm for constructing such embeddings.

5.1 Complexity

The complexity analysis of the training algorithm and the online retrieval is the
same as for the original BoostMap algorithm, and is discussed in detail in [Athitsos
et al. 2004; Athitsos et al. 2005; Athitsos 2006]. For the training algorithm, if at
each training round we evaluate m weak classifiers by measuring their performance
on t training triples, the computational time per training round is O(mt). Before
we even start the training algorithm, we need to compute distances DX from every

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

16 · Vassilis Athitsos et al.

object in C (the set of objects that we use to form 1D embeddings) to every object
in C and to every object in Xtr (the set of objects from which we form training
triples). We also need all distances between pairs of objects in Xtr. If (as in our
experiments) C and Xtr have an equal number of elements, then the number of
distances that we need to precompute is quadratic to |C|. With respect to the
online filter-and-refine retrieval cost, computing the d-dimensional embedding of a
query object takes O(d) time and requires O(d) evaluations of DX . Comparing the
embedding of the query to the embeddings of n database objects takes time O(dn).

5.2 Optimization Issues

It is important to point out that the embedding construction algorithm described
in this section does not guarantee finding a globally optimal solution, i.e., a query-
sensitive embedding whose classification error on triples of objects is globally opti-
mal. The algorithm merely converges to a local optimum. This property is inher-
ited from the original AdaBoost algorithm, which greedily selects at each training
round a weak classifier and an associated weight that give optimal results when
combined with the previously chosen weak classifiers and weights. At the same
time, AdaBoost is a very popular machine learning method, that has been applied
successfully in multiple domains, because of its efficiency, ability to deal with very
high dimensional data, and the empirically observed property that it resists over-
fitting the training data and produces classifiers that work well on data that was
not used for training.

It is also important to stress that other optimization methods can also be used
for the task of constructing a query-sensitive embedding. BoostMap, with its use
of AdaBoost, provides a good trade-off between efficiency of training algorithm and
accuracy of the resulting embedding. A computationally intractable alternative
would be to perform brute force search over the space of all possible linear com-
binations of query-sensitive embeddings. A feasible alternative is to optimize the
embedding using gradient descent, after providing one or more starting points for
the descent. Greedily choosing 1D embeddings one by one is another option. In
Sec. 6 we describe such a greedy optimization method, that can be used to min-
imize the stress of the embedding. Minimizing stress is an optimization criterion
for which the BoostMap algorithm cannot be used.

5.3 Using Sampling of Triples to Speed Up Training

The running time of the training algorithm is linear to the number of training
triples. At the same time, using a large number of training triples allows the training
algorithm to construct a more accurate classifier. We often observe in practice
that, after several training rounds, the classifier constructed by AdaBoost classifies
correctly all training triples, while the classifier still makes mistakes on validation
triples. This is a case of classifier overfitting. Overfitting is a more significant issue
with query-sensitive embeddings than with query-insensitive embeddings [Athitsos
et al. 2004], because query-sensitive embeddings have a much larger number of
degrees of freedom. Using a larger number of training triples is a straightforward
approach for addressing overfitting.

A solution to the dilemma of trading training time for classifier accuracy is to use
a relatively large number of training triples, but to only use a sample of those triples

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

ACM Transactions on Database Systems · 17

at each training round. In particular, training time is linear to the time it takes to
evaluate Eq. 12. That equation is evaluated repeatedly at each training round j,
to compute the Zj value for many different choices of an embedding F , range V ,
and weight α. Computing Zj takes time linear to the number of training triples.
By using only a sample of training triples to evaluate Eq. 12 we can significantly
speed up training time. At the same time, while the choice of weak classifier at each
training round j may overfit the sample set of triples used at that training round,
the large majority of training triples are not considered at round j, and therefore
are not overfitted by the weak classifier chosen at that round.

In addition, we can bias the sampling so that training triples that are misclassified
by the current strong classifier are overrepresented in the sample set. Naturally,
in that case, the weight of the sampled misclassified training triples needs to be
normalized to reflect the relative weight of misclassified training triples in the en-
tire training set. By overrepresenting misclassified triples we make available to
the training algorithm a better representation of the problematic regions where
classification needs to be improved.

In our experiments we have implemented sampling of training triples. At each
training round, we constrain the sampling so that half of the sampled triples are
triples misclassified by the current strong classifier. Overall, using sampling we
speed up training time by an order of magnitude over the implementation we used
in [Athitsos et al. 2005], while obtaining comparable classification accuracy.

5.4 Contractiveness

Contractiveness is an important property of some types of embeddings. When it
holds, contractiveness can be used to guarantee that filter-and-refine retrieval will
always return the true k-nearest neighbors, for any query [Hjaltason and Samet
2003a]. An embedding F , that maps space X with distance measure DX into
a vector space with distance measure D is contractive if for any x1, x2 ∈ X it
holds that D(F (x1), F (x2)) ≤ DX(x1, x2). As explained in [Hjaltason and Samet
2003a], when an embedding is contractive, then the refine step of filter-and-refine
retrieval can automatically decide how many exact distance computations it needs
to perform, given a query, in order to guarantee correct results.

Query-sensitive embedding Fout with associated distance measure Dout, con-
structed as described in Sec. 4.3.1, can be made contractive by dividing Dout(Fout(q), Fout(x))
with a query-sensitive normalization term, provided that:

—DX is metric.

—The weights αj chosen by the training algorithm are non-negative. As discussed
in Sec. 4.3, our implementation ensures that all weights αj are non-negative.

If Fout contains no line projection embeddings, the normalization term W (q) that
should be used is:

W (q) =

d
∑

i=1

Ai(q) . (17)

Proposition 2. Let q, x ∈ X. Suppose that αj ≥ 0 for all j, and suppose that

DX is metric. If all dimensions of Fout are reference-object embeddings, then the

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

18 · Vassilis Athitsos et al.

following property holds:

1

W (q)
Dout(Fout(q), Fout(x)) ≤ DX(q, x) . (18)

Proof: If each dimension of Fout is a reference-object embedding, then Fout in
be represented as Fout = (F r1 , . . . , F rd), where d is the dimensionality of Fout

and ri are reference objects. We will denote Fout(q) as (q1, . . . , qd) and Fout(x) as
(x1, . . . , xd). First, based on the triangle inequality, we can easily see that:

|qi − xi| = |DX(q, ri) − DX(x, ri)| ≤ DX(q, x) . (19)

Using this observation, we can complete the proof:

1

W (q)
Dout(Fout(q), Fout(x)) =

1

W (q)

d
∑

i=1

(Ai(q)|qi − xi|)

≤
1

W (q)

d
∑

i=1

(Ai(q)DX (q, x))

=
1

W (q)
DX(q, x)

d
∑

i=1

(Ai(q))

=
1

W (q)
DX(q, x)W (q)

= DX(q, x) .

2

If Fi, the i-th dimension of Fout, is a line-projection embedding, then it is shown
in [Hjaltason and Samet 2003a] that |Fi(q) − Fi(x)| ≤ 3DX(q, x). Therefore, if we
divide Dout(q, x) by 3W (q), then Fout is contractive even in the case where some
of its dimensions are line-projection embeddings.

We should point out that the above proof of contractiveness follows the same
pattern as the proof in [Athitsos 2006] that query-insensitive BoostMap embeddings
are contractive. The key difference here is that, since the distance measure is query-
sensitive, the normalization factor W (q) is a function of the query q, whereas for
query-insensitive BoostMap embeddings the normalization factor is a constant.

5.5 Replacing Binary Splitters with More General Functions

We have obtained query-sensitive embeddings by replacing the query-insensitive
weak classifiers F̃ (q, a, b) used in the original BoostMap algorithm [Athitsos et al.
2004] with query-sensitive weak classifiers of the form S(q)F̃ (q, a, b), where S maps
X to the binary set {0, 1}. However, using a binary S is essentially an imple-
mentation choice. In general, function S can be an arbitrary function mapping X
to [0,∞). For example, S can be a smoothed out version of a binary function,
that makes smooth transitions between regions of X mapped to 0 and regions of
X mapped to 1. The training algorithm can easily be modified to choose such
more complicated functions S. At the same time, optimizing a non-binary function

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

ACM Transactions on Database Systems · 19

S may be more challenging, since it may involve searching over a larger space of
parameters.

We should note that two key properties of query-sensitive embeddings con-
structed using binary splitters S also hold if we replace such splitters with ar-
bitrary functions S. The first property is the equivalence between the classifier
constructed by AdaBoost and the corresponding embedding, in other words the
fact that F̃out = H . The second property is contractiveness. Overall, replacing
binary splitters with more general functions provides additional flexibility to the
embedding optimization algorithm, and is an interesting topic for future investiga-
tion.

5.6 Dynamic Datasets

In our discussion so far we have assumed that the database is static. In some
applications, however, we may need to add or remove objects online. As long as
the underlying distribution of database objects is not altered, adding and removing
objects is pretty straightforward. When adding an object x we need to compute its
embedding Fout(x). If Fout is d-dimensional, computing Fout(x) requires computing
at most 2d distances DX between x and database objects.

If the underlying distribution of database objects changes significantly because
of additions and removals, we may have to create a new embedding. A way to
check whether the distribution of database objects has changed significantly is by
measuring, at regular intervals, the error of the current embedding Fout, i.e., the
classification error of F̃out on triples of objects picked (from the current database
distribution) the same way we would choose training triples. When that error
increases above some threshold, we can reuse the training algorithm to construct a
new embedding.

6. OPTIMIZING QUERY-SENSITIVE EMBEDDINGS FOR STRESS

In Sec. 4 we have described a modified version of the BoostMap algorithm, which
can be used for optimizing a query-sensitive embedding. The optimization crite-
rion used (error rate on triples of objects) is a measure of the amount of nearest
neighbor structure preserved by the embedding. We should note that BoostMap
and AdaBoost are applicable because we have chosen an optimization criterion
that corresponds to the error rate of a binary classifier. At the same time, query-
sensitive embeddings can also be defined in applications where the goal is not
nearest-neighbor retrieval. For example, some applications may require optimizing
the approximation of the actual pairwise distances between objects in the original
space. In that case other optimization criteria are applicable, like minimizing the
stress or the distortion of the embedding. BoostMap has not been designed to
work with such optimization criteria, but gradient descent and greedy optimization
methods can still be applied.

In this section we describe a greedy algorithm for constructing a query-sensitive
embedding in a way that minimizes the stress of the embedding. Greedy algo-
rithms for minimizing embedding stress have been previously proposed in the lit-
erature [Athitsos and Sclaroff 2003; Hristescu and Farach-Colton 1999], for query-
insensitive embeddings. We first describe an algorithm for query-insensitive embed-
dings and then we propose a modified version of that algorithm that can generate

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

20 · Vassilis Athitsos et al.

query-sensitive embeddings.

6.1 Minimizing Stress for Query-Insensitive Embeddings

Stress is a measure of how well an embedding preserves distances. Given a space
X with a distance measure DX , a d-dimensional embedding F : X → R

d, and a
distance measure D on R

d, we define the stress σ(F) of F as follows:

σ(F) = minc>0

√

Ex1,x2∈X((cD(F (x1), F (x2)) − DX(x1, x2))2)

Ex1,x2∈XDX(x1, x2)
, (20)

where E denotes the expected value over a set. As mentioned in [Hjaltason and
Samet 2003a], alternative definitions of stress are also commonly used in the liter-
ature. By minimizing over all positive scalars c we ensure that distance measure D
is optimally scaled.

Suppose that we have a pool F of 1D embeddings, and we want to combine some
of those embeddings into a multidimensional embedding F = (F1, ..., Fd) in a way
that minimizes stress. Obviously, brute-force search for the globally optimal com-
bination is computationally prohibitive. On the other hand, it is easy to implement
a greedy algorithm that selects 1D embeddings one by one, choosing at each step
the 1D embedding which, combined with the already chosen embeddings, yields
the smallest stress value [Athitsos and Sclaroff 2003; Hristescu and Farach-Colton
1999]. The algorithm proceeds as follows:

(1) j = 1.

(2) F1 = argminF∈F
[σ(F)].

(3) Fj+1 = argminF∈F[σ((F1, . . . , Fj , F))].

(4) j = j + 1.

(5) Unless some stopping criterion is satisfied, go to Step 3.

(6) Output embedding Fout = (F1, . . . , Fj).

The stopping criterion may be simply whether we have reached a certain max-
imum number jmax of iterations. The distance measure D used for comparing
vectors can be arbitrary. In our implementation, we use an unweighted L1 distance
measure.

6.2 Minimizing Stress for Query-Sensitive Embeddings

The algorithm described above can be modified to produce a query-sensitive em-
bedding, i.e., an embedding that uses a query-sensitive distance measure D. The
key modification is that, at each step j, instead of simply choosing an optimal Fj ,
we choose an optimal combination of an Fj and an area of influence Vj for Fj . This
area of influence specifies that dimension j should only be used for queries q such
that Fj(q) ∈ Vj . When Fj(q) /∈ Vj , then the query-sensitive weight for dimension
j should be set to zero. We say that an object x belongs to an area of influence Vj

if Fj(x) ∈ Vj .
Given embeddings F1, . . . , Fd and corresponding areas of influence V1, . . . , Vd, a

useful quantity to define for each object x ∈ X is Φ(x), which counts the number

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

ACM Transactions on Database Systems · 21

of areas of influence Vj that object x belongs to:

Φ(x) =

j
∑

i=1

SFi,Vi
(x) . (21)

In the above equation we use the splitter function SF,V defined in Eq. 8 of Sec.
4.2. Splitter SF,V (x) outputs 1 if F (x) ∈ V and 0 otherwise.

As the greedy algorithm picks d different embeddings Fj and areas of influence
Vj , it may be that Φ(x) is relatively large for some objects x and relatively small for
other objects. Overall, the expected average distance between the embedding of a
query q and embeddings of database objects tends to increase with Φ(q). In the al-
gorithm presented in Sec. 4, that minimizes classification error on triples (q, x1, x2),
the scale of the average distance between the embedding of q and the embeddings of
database objects did not matter. However, if we want to minimize stress, the scale
of distances does matter, since to measure stress we directly compare distances D
in the vector space with distances DX in the original space. In order to make the
average distance between a query q and database objects independent of Φ(q), we
need to normalize all distances in the vector space by dividing them with Φ(q).

We now proceed to formally define the query-sensitive distance measure DV to
be used for embedding F = (F1, . . . , Fd), given a sequence V = (V1, . . . , Vd) of areas
of influence Vj for each Fj . For objects x1, x2 ∈ X , we define DV(F (x1), F (x2)) as
follows:

DV(F (x1), F (x2)) =

∑d

i=1(SFi,Vi
(x1)|Fi(x1) − Fi(x2)|)

Φ(x1)
. (22)

In order to select an area of influence Vj for embedding Fj , we need to search
over different possible areas of influence V . In our implementation, we constrain
embeddings Fj to be 1D embeddings defined using reference objects (Eq. 1). Given
an embedding Fj , and a set of n objects x1, . . . , xn that we use to measure stress,
we define a set of m candidate areas of influence VFj

= {Vj,1, . . . , Vj,m}. Each Vj,i

is set to [0, ti], where ti is set in such a way that only ni
m

objects among x1, . . . , xn

belong to area of influence [0, ti].
Before we specify each step of the optimization algorithm, we need to introduce

some additional notation. Let V be a sequence (V1, . . . , Vd) of areas of influence.
We denote by V ⊕ V the sequence we obtain by appending V to the end of V , so
that V ⊕ V = (V1, . . . , Vd, V). Also, given an embedding F = (F1, . . . , Fd) and a
sequence V = (V1, . . . , Vd), we define the stress σ(F,V) corresponding to using F
with the areas of influence specified in V as follows:

σ(F,V) = minc>0

√

Ex1,x2∈X((cDV(F (x1), F (x2)) − DX(x1, x2))2)

Ex1,x2∈X(DX(x1, x2))
. (23)

We can now describe step-by-step the greedy algorithm for constructing a query-
sensitive embedding in a way that minimizes stress:

(1) j = 1.

(2) V = ∅.

(3) [F1, V1] = argminF∈F,V ∈VF
[σ(F,V ⊕ V)].

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

22 · Vassilis Athitsos et al.

(4) V = (V1).

(5) [Fj+1, Vj+1] = argminF∈F,V ∈VF
[σ((F1, . . . , Fj , F),V ⊕ V)].

(6) V = V ⊕ Vj+1.

(7) j = j + 1.

(8) Unless some stopping criterion is satisfied, go to Step 5.

(9) Output embedding Fout = (F1, . . . , Fj), areas of influence (V1, . . . , Vj).

In the experiments we will show that, in our datasets, query-sensitive embeddings
constructed using this algorithm achieve smaller stress than the query-insensitive
embeddings constructed using the greedy algorithm described in Sec. 6.1. We
should note that similar greedy algorithms can also be implemented for minimizing
embedding distortion instead of stress.

7. EXPERIMENTS

We have evaluated the proposed method on two different datasets: the MNIST
dataset of handwritten digits [LeCun et al. 1998], with the Shape Context Distance
[Belongie et al. 2002] as the exact distance measure, and a time series database
[Vlachos et al. 2003] with constrained Dynamic Time Warping [Vlachos et al. 2003]
as the exact distance measure. On each dataset we provide two sets of results.
The first set of results explicitly evaluates the benefits of using a query-sensitive
distance measure, by comparing our method to the original BoostMap algorithm.
The second set of results compares our method to alternative embedding methods
and to VP-trees [Yianilos 1993].

7.1 Evaluation Methodology

To compare different embedding methods, we used each of those methods to build
embeddings of various dimensions (the dimensionality ranged from 1 to 600). For
each embedding method, for each k and accuracy percentage B, we report the
number of exact distance computations needed in order to successfully retrieve
all k true nearest neighbors for a percentage of query objects equal to B, while
minimizing the total number of exact distance computations per query object.

In both datasets we found that retrieval time, using any of the indexing methods
we have tried, was dominated by the number of exact distance computations we
needed to evaluate for each query object. In the experiments, we observed that disk
access time and high-dimensional vector comparisons performed at the filter step
were negligible in comparison to the time spent evaluating exact distances. For this
reason, we measure retrieval efficiency in units of exact distance computations.

For each embedding method, number k of nearest neighbors, and desired accuracy
rate B, we need to choose the dimensionality d of the embedding. We do that using
a validation set of queries, that is a subset of the database, and is disjoint from the
test set of queries that we use to evaluate performance. On this validation set we
find the value of d that minimizes the number of exact distance computations per
query, given k and B. Given k, d, and B, we set parameter p of filter-and-refine
retrieval to the smallest value that is required to obtain accuracy B. After choosing
p, the number of exact distance computations per query object is fully specified.

After we choose a value for d, we now use the d-dimensional embedding as part of
filter-and-refine retrieval, in order to retrieve the k-nearest neighbors of the queries

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

ACM Transactions on Database Systems · 23

in the test set. Then, we reset p to a value that leads to retrieval accuracy B on
the test set of queries, and we report the number of exact distance computations
per query that correspond to d and the new choice of p. Setting p so as to obtain
a desired retrieval accuracy rate allows us to directly compare the number of exact
distances required by different embedding methods to obtain that accuracy rate.

7.2 Datasets

The MNIST dataset contains images of isolated handwritten digits (numbers from
0 to 9). MNIST consists of a training set of 60,000 images, which we used as the
database, and a test set (disjoint from the training set) of 10,000 images that we used
as query objects. Shape context matching is a distance measure that is described
in [Belongie et al. 2002]. To compute that distance, 100 shape context features
are extracted from each image. Two images are aligned via bipartite matching
between their features, which involves the computationally expensive Hungarian
algorithm. The final distance is a weighted sum of three terms: the cost of matching
shape context features, the cost of the alignment, and the intensity-level differences
between image subwindows centered at matching feature locations. A 3-nearest-
neighbor classifier using shape context matching gave state-of-the-art classification
accuracy on the MNIST database, with an error rate of only 0.63%.

The second dataset that we tried was the time-series dataset used in [Vlachos
et al. 2003]. To generate that dataset, various real datasets were used as seeds
for generating a large number of time-series that are variations of the original
sequences. Multiple copies of every real sequence were constructed by incorporating
small variations in the original patterns as well as additions of random compression
and decompression in time. The final dataset contains a database set of 32,768
sequences, and a query set of 50 sequences. Sequences are multi-dimensional, with
an average size of 500 points each. The series were normalized by subtracting the
average value in each dimension. Exact distances were measured using constrained
Dynamic Time Warping, with a warping length δ = 10% of the total length of the
shortest sequence under comparison as described in [Vlachos et al. 2003].

For the time series dataset, we performed an initial evaluation on the 50 queries
used as a test set in [Vlachos et al. 2003]. Our method achieved a speed-up factor
of 51.2, with a 150-dimensional embedding and with filter-and-refine parameter
p = 443. With those settings, the true nearest neighbor was retrieved correctly
for each of the 50 queries. The indexing method in [Vlachos et al. 2003] reports a
speed-up of approximately a factor of 5, while retrieving correctly the true nearest
neighbor for all 50 queries, measured on the same set of 50 queries we used.

However, to get a clearer picture of performance, we decided to use a larger set
of queries. To achieve that, we merged the query set and the database, and from
the merged set we chose (randomly) a new set of 1,000 queries, with the remaining
31,818 objects used as the database for those queries. We found that performance
on the new set of queries was not as good as on the initial set of 50 queries; on the
new set of queries, a speedup factor of 50 was obtained only if we allowed the true
nearest neighbor to be missed for 10% of the query objects. At the same time, even
on the new set of queries, our method achieved significant speed-ups for k-nearest
neighbor retrieval with different accuracy percentages and different values of k. The
results reported in the remainder of this section for the time series dataset are with

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

24 · Vassilis Athitsos et al.

5 10 15 20 25 30 35 40 45 50

1024

2048

4096

8192

16384

k

di

st
an

ce
s

fo
r 9

0%
 a

cc
ur

ac
y

Ra−QI
Se−QI
Ra−QS
Se−QS

5 10 15 20 25 30 35 40 45 50

2048

4096

8192

16384

32768

k

di

st
an

ce
s

fo
r 9

5%
 a

cc
ur

ac
y

Ra−QI
Se−QI
Ra−QS
Se−QS

5 10 15 20 25 30 35 40 45 50

4096

8192

16384

32768

60000

k

di

st
an

ce
s

fo
r 9

9%
 a

cc
ur

ac
y

Ra−QI
Se−QI
Ra−QS
Se−QS

Fig. 5. Comparing methods Ra-QI, Ra-QS, Se-QI and Se-QS (the proposed method)
on the MNIST database, using shape context matching as the exact distance measure.
We show the number of exact distance computations needed by each method to achieve
correct retrieval of all k nearest neighbors (k ranging from 1 to 50) for 90%, 95%, and
99% of the 10,000 query objects that we use as a test set.

respect to the set of 1,000 queries.

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

ACM Transactions on Database Systems · 25

5 10 15 20 25 30 35 40 45 50
512

1024

2048

4096

8192

16384

31818

k

di

st
an

ce
s

fo
r 9

0%
 a

cc
ur

ac
y

Ra−QI
Se−QI
Ra−QS
Se−QS

5 10 15 20 25 30 35 40 45 50

2048

4096

8192

16384

31818

k

di

st
an

ce
s

fo
r 9

5%
 a

cc
ur

ac
y

Ra−QI
Se−QI
Ra−QS
Se−QS

5 10 15 20 25 30 35 40 45 50

4096

8192

16384

31818

k

di

st
an

ce
s

fo
r 9

9%
 a

cc
ur

ac
y

Ra−QI
Se−QI
Ra−QS
Se−QS

Fig. 6. Comparing methods Ra-QI, Ra-QS, Se-QI and Se-QS (the proposed method) on
the time series database. We show the number of exact distance computations needed by
each method to achieve correct retrieval of all k nearest neighbors (k ranging from 1 to
50) for 90%, 95%, and 99% of the 1,000 query objects that we use as a test set.

7.3 Query-Sensitive vs. Query-Insensitive

Since we use an adaptation of the BoostMap algorithm to construct query-sensitive
embeddings, the most direct way to evaluate the advantages of query-sensitive
embeddings is to compare these embeddings to the query-insensitive embeddings
produced using the original BoostMap algorithm. In order to get a more com-

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

26 · Vassilis Athitsos et al.

prehensive picture, we construct embeddings using both the optimization criterion
proposed in [Athitsos et al. 2004], which is based on the failure rate of the embed-
ding on random training triples of objects, and the optimization criterion described
in this paper, which is based on the failure rate of the embedding on training triples
constructed as discussed in Sec. 4.3.

Overall, then, we evaluate four embedding methods, each of which is character-
ized by whether it is query-sensitive or not, and whether it uses random training
triples or not. To denote each method, and its relation to the other methods, we
use the following abbreviations:

Ra:. Training triples are chosen entirely randomly from the set of all possible
triples, as in the original BoostMap method [Athitsos et al. 2004].

Se:. Training triples are chosen selectively, from a restricted set of possible triples,
as described in Sec. 4.3.

QI:. A query-insensitive distance measure Dout is constructed, using the original
BoostMap method.

QS:. A query-sensitive distance measure Dout is constructed, as proposed in this
paper.

Based on these abbreviations, Ra-QI denotes the original BoostMap algorithm,
and Se-QS denotes the algorithm we describe in this paper. Ra-QS and Se-QI add
to the original BoostMap respectively the method for building a query-sensitive
distance measure and the method for choosing training triples.

In Figs. 5 and 6 we compare the four different methods on k-nearest neighbor
retrieval. The optimal number of exact distance computations (i.e., corresponding
to optimal settings for the dimensionality of the embedding and the parameter p) is
shown for different values of k, from 1 to 50, and different percentages of accuracy
(i.e., 90%, 95%, and 99%), in Fig. 5 for the MNIST dataset and Fig. 6 for the time
series dataset.

The results demonstrate that query-sensitive methods clearly outperform their
query-insensitive counterparts, and provide significantly better trade-offs between
efficiency and accuracy. In some cases, query-sensitive embeddings achieve perfor-
mance that is two or three times as fast for a fixed error rate.

To train embeddings, for the original BoostMap, the proposed method, and in-
termediate methods Ra-QS and Se-QI, we always used a training set of 10 million
triples, generated from a set Xtr of 5,000 database objects. At each training round,
a sample of 30,000 training triples was used. Half of the sampled triples were triples
that were misclassified by the current strong classifier. The set C of candidate ob-
jects also consisted of 5,000 database objects. Query objects from the test set were
not used in any part of the training algorithm. Parameter k1, used in choosing
training triples, was set to 5 for the MNIST dataset and to 9 for the time series
dataset, following the guidelines described in Sec. 4.3 for kmax = 50. This way,
embeddings were optimized for retrieval of up to 50 nearest neighbors per query.

7.4 Comparison to Alternative Indexing Methods

In order to better evaluate the performance of query-sensitive embeddings, we com-
pare them vs. four alternative indexing methods:

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

ACM Transactions on Database Systems · 27

5 10 15 20 25 30 35 40 45 50
1024

2048

4096

8192

16384

32768

60000

k

di

st
an

ce
s

fo
r 9

0%
 a

cc
ur

ac
y

FastMap
random ref. obj.
random projections
VP−trees
Se−QS

5 10 15 20 25 30 35 40 45 50
1024

2048

4096

8192

16384

32768

60000

k

di

st
an

ce
s

fo
r 9

5%
 a

cc
ur

ac
y

FastMap
random ref. obj.
random projections
VP−trees
Se−QS

5 10 15 20 25 30 35 40 45 50

4096

8192

16384

32768

60000

k

di

st
an

ce
s

fo
r 9

9%
 a

cc
ur

ac
y

FastMap
random ref. obj.
random projections
VP−trees
Se−QS

Fig. 7. Comparing methods Se-QS (our method), FastMap, random reference objects,
random line projections, and VP-trees, on the MNIST database. We show the number of
exact distance computations needed by each method to achieve correct retrieval of all k

nearest neighbors (k ranging from 1 to 50) for 90%, 95%, and 99% of the 10,000 query
objects that we use as a test set.

—Fastmap [Faloutsos and Lin 1995]. In each dataset, we constructed a FastMap
embedding by running the FastMap algorithm on a subset of the database, con-
taining 5,000 objects. This was the same set that we used as the set C of candi-
date objects in the training algorithm for our method.

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

28 · Vassilis Athitsos et al.

5 10 15 20 25 30 35 40 45 50
512

1024

2048

4096

8192

16384

31818

k

di

st
an

ce
s

fo
r 9

0%
 a

cc
ur

ac
y

FastMap
random ref. obj.
random projections
VP−trees
Se−QS

5 10 15 20 25 30 35 40 45 50
1024

2048

4096

8192

16384

31818

k

di

st
an

ce
s

fo
r 9

5%
 a

cc
ur

ac
y

FastMap
random ref. obj.
random projections
VP−trees
Se−QS

5 10 15 20 25 30 35 40 45 50

2048

4096

8192

16384

31818

k

di

st
an

ce
s

fo
r 9

9%
 a

cc
ur

ac
y

FastMap
random ref. obj.
random projections
VP−trees
Se−QS

Fig. 8. Comparing methods Se-QS (our method), FastMap, random reference objects,
random line projections, and VP-trees, on the time series database. We show the number
of exact distance computations needed by each method to achieve correct retrieval of all
k nearest neighbors (k ranging from 1 to 50) for 90%, 95%, and 99% of the 1,000 query
objects that we use as a test set.

—Random reference objects. We constructed a high-dimensional embedding for
which each dimension was a 1D reference-object embedding, and the reference
objects were chosen randomly.

—Random line projections. We constructed a high-dimensional embedding for

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

ACM Transactions on Database Systems · 29

5 10 15 20 25 30 35 40 45 502048

4096

8192

16384

31768

60000

k

di

st
an

ce
s

fo
r 9

5%
 a

cc
ur

ac
y

RRO
Se−QS 100
Se−QS 200
Se−QS 400
Se−QS 800
Se−QS 1600
Se−QS 3200

Fig. 9. Retrieval results on the MNIST dataset for 100-dimensional Se-QS embeddings,
constructed with sets C and Xtr including only 100, 200, 400, 800, 1600, and 3200 objects
respectively, and using only 10,000 training triples. We compare those results to the
results for a 100-dimensional RRO embedding. For different values of k, the figure shows
the number of exact distance computations required by each embedding method, in order
to retrieve the true k nearest neighbors for 95% of the 10,000 queries.

which each dimension was a 1D line-projection embedding, and the pivot objects
for that projection were chosen randomly.

—VP-trees [Yianilos 1993].

VP-trees rely on the triangle inequality to achieve efficient retrieval while always
finding the true nearest neighbors. Both shape context matching and Dynamic
Time Warping do not obey the triangle inequality. Using a method similar to
[Sahinalp et al. 2003] we modify the search algorithm to guarantee correct results
assuming that the triangle inequality is satisfied up to a constant γ. In order
to better evaluate the trade-offs between efficiency and accuracy that VP-trees
provide, we created a large number of different VP-trees using different values for
γ. Larger values of γ lead to more accurate results and slower retrieval time.

In Figs. 7 and 8 we compare the four different methods on k-nearest neighbor
retrieval. The optimal number of exact distance computations (i.e., corresponding
to optimal settings for the dimensionality of the embedding and the parameter p) is
shown for different values of k, from 1 to 50, and different percentages of accuracy
(i.e., 90%, 95%, and 99%). For VP-trees, for each specified accuracy, we found by
trial-and-error the smallest γ value that provided that accuracy. In many settings
our method is faster than any alternative by a factor between 1.45 and 2.7, e.g.,
for 90%, 95% and 99% accuracy on 1, 10, and 50-nearest neighbor retrieval on the
MNIST database.

7.5 Experiments on Training Using Small Database Samples

We have run an experiment on the MNIST dataset, in which we used the proposed
method, i.e., method Se-QS, but with relatively small sizes for sets C (used to
define 1D embeddings) and Xtr (used to form training triples) used in the training
algorithm, and with fewer training triples. Set sizes |C| and |Xtr| were always

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

30 · Vassilis Athitsos et al.

equal in this experiment, and we only used 10,000 training triples. We constructed
100-dimensional query-sensitive embeddings by setting |C| and |Xtr| to each of the
following values: 100, 200, 400, 800, 1600, 3200. In Fig. 9 we compare the results
of those embeddings to each other and to the results of a 100-dimensional RRO
embedding. We chose the RRO method for comparison because it gave the best
results among all non-BoostMap-based methods on the MNIST dataset.

Let n be the number of database objects, and define quantity M(F) for an
embedding F to be equal to the number of exact distance computations needed to
embed a single object. For a d-dimensional RRO embedding F , M(F) = d. For a
query-sensitive d-dimensional embedding F constructed using d1 reference object
embeddings and d2 line projection embeddings, M(F) = d1+2d2. Since |C| = |Xtr|,
the number of exact distances we need to compute for constructing a query-sensitive
embedding F is 2|C|2 + nM(F). We need 2|C|2 distance computations to compute
all the distances necessary to run the training algorithm, and nM(F) distances to
embed all database objects once we have constructed the embedding. In contrast,
for an RRO d-dimensional embedding F we only need nM(F) = nd distances,
since no training is performed. For the 100-dimensional RRO embedding we need
to compute 6 million distances, which takes 111 hours on an AMD Opteron 2.2GHz
processor.

For the 100-dimensional query-sensitive embeddings constructed in this experi-
ment, M(F) ranged between 130 and 165. The first value of |C| for which a Se-QS
embedding outperforms the RRO embedding is |C| = 800. For that embedding,
M(F) = 162, and to construct that embedding in total we needed to compute ex-
actly 11 million distances. On our computer it takes about 204 hours to compute
that many distances, and it takes about 20 additional minutes to perform the train-
ing. Therefore, for less than double the processing time of constructing an RRO
embedding, we can construct a query-sensitive embedding that performs better.
As we see in Fig. 9, increasing |C| to 1600 leads to even better results, but then
increasing |C| further does not improve performance significantly.

It is also important to note here that setting |C| to 100, 200, or 400, the training
algorithm creates embeddings that perform worse than choosing random reference
objects. These results demonstrate the problem of overfitting: when the training
set is too small, the training algorithm can fit the training data very well, but
performance on unseen data is much worse.

7.6 Measuring the Range of Query-Sensitive Classifiers

Here we take a closer look at the training algorithm as applied on the MNIST
dataset. We denote by Q̃F ′

j
,Vj

the weak classifier chosen by the training algorithm
at training round j. For each j, we measured the percentage of database objects
accepted by splitter SF ′

j
,Vj

. This percentage is an indicator of how local classifier

Q̃F ′

j
,Vj

is, i.e., for what fraction of triples (q, a, b) classifier Q̃F ′

j
,Vj

produces a non-
zero output and thus contributes to the output of the strong classifier H constructed
by AdaBoost. The results are shown on Fig. 10. As can be seen in that figure,
the first 20-30 classifiers chosen were global or almost global, and gradually became
more and more local. For the last 500 training rounds, each weak classifier chosen
at those rounds was applicable on average to fewer than 10% of all possible triples,

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

ACM Transactions on Database Systems · 31

100 200 300 400 500 600 700 800

10
20
30
40
50
60
70
80
90

100

training round

%
 o

f t
ra

in
in

g
ob

je
ct

s
ac

ce
pt

ed
 b

y
sp

litt
er

100 200 300 400 500 600 700 800

10
20
30
40
50
60
70
80
90

100

training round

%
 o

f t
ra

in
in

g
ob

je
ct

s
ac

ce
pt

ed
 b

y
sp

litt
er

Fig. 10. Left: plotting the percentage of database objects accepted by the splitter, vs.
the training round at which the splitter was chosen, for the MNIST dataset. Right: a
smoothed version of the top figure. Here we show for each training round the average
percentage of objects accepted by the splitters chosen at that round, the ten previous
rounds, and the ten subsequent rounds.

meaning that the corresponding splitter accepted fewer than 10% of all database
objects.

What this picture tells us is that, on the MNIST dataset, for the first 20 or 30
dimensions using a query-sensitive distance measure does not make much difference,
because for almost all queries all the dimensions turn out to be selected. From the
point of view of a particular query object q, the first 20 or 30 embedding dimensions
all provide useful information about the nearest neighbors of that query. However,
after a few tens of training rounds, given the information provided by the weak
classifiers that have already been chosen, it becomes less and less likely that the
next chosen weak classifier will provide beneficial information about the nearest
neighbors of q. According to the training algorithm, it is usually better to ignore
that information, and instead only use the information from the weak classifiers
that were considered relevant for that query. Embedding methods like the original
BoostMap algorithm that use query-insensitive distance measures do not have the
option of ignoring that information, and the filter-and-refine experiments indicate
that such insensitivity leads to a notable decrease in accuracy.

7.7 Runtimes

On average, computing exact shape context distances can be done at the rate
of 15 distances per second, and computing constrained Dynamic Time Warping
distances can be done at the rate of about 60 distances per second, on an AMD
Opteron 2.2GHz processor, using an optimized C++ implementation. To obtain
the corresponding processing times per query for each setting shown in Figs. 5, 6,
7, 8, and 9, one simply needs to divide the number of exact distance computations
by 15 for shape context matching and by 60 for Dynamic Time Warping.

With respect to the training algorithm, it typically takes about one hour to
construct a 300-dimensional embedding, using 10 million training triples and using
a sample of 30,000 of those triples at each training round. The training algorithm
is about 10 times faster than the implementation we used in [Athitsos et al. 2005],
where we used 300,000 training triples and no sampling, while the accuracy of

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

32 · Vassilis Athitsos et al.

MNIST Database with Shape Context

sampling no sampling

error rate on training triples 1.49 % 0.00 %

error rate on validation triples 1.48 % 1.51 %

training time 64 minutes 633 minutes

Table I. Comparing the training time (to construct a 300-dimensional embedding) and
classification accuracy of the resulting classifier on training and validation triples, for
two variations of the training algorithm: the “sampling” variation, that uses 10 million
training triples and samples 30,000 of them at each training round , and the “no sampling”
variation, where the same 300,000 training triples are used at each round. Results are
shown for the MNIST dataset.

Dataset Query-insensitive stress Query-sensitive stress

MNIST 0.1447 .1364

Time series 0.3063 .1773

Table II. Stress values for query-insensitive and query-sensitive embeddings, on the MNIST
and time series datasets.

the classifiers obtained with the current implementation is marginally better, as
measured on the set of validation triples. As an example, Table I compares training
times and classification accuracies obtained with sampling and without sampling
for the MNIST dataset. Without sampling, the classifier achieves zero error rate
on training triples, but the error rate on validation triples is slightly higher than
using sampling.

7.8 Experiments on Minimizing Stress

We have applied to our two datasets the algorithms described in Secs. 6.1 and 6.2
for constructing respectively query-insensitive and query-sensitive embeddings so
as to minimize embedding stress. For both algorithms, the pool of 1D embeddings
consisted of 5000 reference-object embeddings, defined using 5000 database objects.
During embedding construction, 100,000 training pairs of objects were used to mea-
sure stress. The objects in the training pairs were from a subset of 5000 database
objects, disjoint from the database objects used as reference objects. For each 1D
embedding F , the set VF of candidate areas of influence had size 50. The stop-
ping criterion used in the embedding construction algorithms was that j could not
exceed 500, i.e., 500 reference objects could be picked. Once an embedding was
constructed, its stress was measured based on the distances from all test objects to
all database objects.

Table II lists the results obtained using query-insensitive and query-sensitive
embeddings on the MNIST dataset and the time series dataset. In both datasets
query-sensitive embeddings achieved a smaller stress value. In the MNIST dataset,
the query-sensitive stress was 5.7% smaller than the query-insensitive stress. The
difference was significantly more pronounced in the time series dataset, where the
query-sensitive stress was about 42% smaller than the query-insensitive stress. As in
the nearest neighbor retrieval experiments, we see that query-sensitive embeddings
have provided better results than their query-insensitive counterparts.

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

ACM Transactions on Database Systems · 33

8. DISCUSSION AND CONCLUSIONS

We have presented a novel type of embeddings for nearest-neighbor retrieval. In
particular, we have described how to construct “query-sensitive” embeddings, i.e.,
embeddings that use a query-sensitive distance measure for the target space of the
embedding. Such a distance measure can capture the fact that different embedding
dimensions are important for different queries, and thus leads to improved retrieval
accuracy at the filter step of filter-and-refine retrieval. Overall, using a query-
sensitive distance measure increases the modeling power of the embedding, and
allows better approximations of the original space.

The experimental results reported in this paper provide a quantitative compari-
son of the proposed algorithm to several alternative methods, on two datasets: the
MNIST dataset of handwritten digits using shape context matching as the under-
lying distance measure, and a time series dataset using constrained Dynamic Time
Warping as the underlying distance measure. The experiments demonstrate that
the proposed method clearly outperforms the alternative methods we have tested,
and adding query-sensitivity clearly improves the quality of the embedding.

We are interested in expanding our theoretical understanding of query-sensitive
embeddings and their properties. The fact that any finite metric space has an
isometric query-sensitive embedding demonstrates the additional modeling power of
query-sensitive embeddings, although this fact cannot be directly applied to provide
any guarantees of performance in a filter-and-refine retrieval system. It is an open
question whether we can leverage the flexibility of query-sensitive embeddings to
provide guarantees of embedding quality and retrieval performance that query-
insensitive embeddings cannot match.

We believe that query-sensitive distance measures may prove useful in other
settings, in addition to embedding-based nearest neighbor retrieval. A common
problem in data mining, clustering, and pattern recognition applications is how to
construct a meaningful distance measure for comparing high-dimensional vectors.
We are interested in exploring whether our algorithm for learning a query-sensitive
distance measure can offer advantages in such applications.

Acknowledgments

This work was supported by NSF grants IIS-0308213 and IIS-0133825, and by ONR
grant N00014-03-1-0108.

REFERENCES

Aggarwal, C. C. 2001. Re-designing distance functions and distance-based applications for high
dimensional data. SIGMOD Record 30, 1, 13–18.

Athitsos, V. 2006. Learning embeddings for indexing, retrieval, and classification, with applica-
tions to object and shape recognition in image databases. Ph.D. thesis, Boston University.

Athitsos, V., Alon, J., and Sclaroff, S. 2005. Efficient nearest neighbor classification using
a cascade of approximate similarity measures. In IEEE Conference on Computer Vision and
Pattern Recognition. 486–493.

Athitsos, V., Alon, J., Sclaroff, S., and Kollios, G. 2004. BoostMap: A method for effi-
cient approximate similarity rankings. In IEEE Conference on Computer Vision and Pattern
Recognition. 268–275.

Athitsos, V., Hadjieleftheriou, M., Kollios, G., and Sclaroff, S. 2005. Query-sensitive
embeddings. In ACM International Conference on Management of Data (SIGMOD). 706–717.

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

34 · Vassilis Athitsos et al.

Athitsos, V. and Sclaroff, S. 2003. Database indexing methods for 3D hand pose estimation.

In Gesture Workshop. Springer-Verlag Heidelberg, 288–299.

Barrow, H., Tenenbaum, J., Bolles, R., and Wolf, H. 1977. Parametric correspondence and
chamfer matching: Two new techniques for image matching. In International Joint Conference
on Artificial Intelligence. 659–663.

Belongie, S., Malik, J., and Puzicha, J. 2002. Shape matching and object recognition using
shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 4, 509–
522.

Böhm, C., Berchtold, S., and Keim, D. A. 2001. Searching in high-dimensional spaces: Index
structures for improving the performance of multimedia databases. ACM Computing Sur-
veys 33, 3, 322–373.

Bourgain, J. 1985. On Lipschitz embeddings of finite metric spaces in Hilbert space. Israel
Journal of Mathematics 52, 46–52.

Bozkaya, T. and Özsoyoglu, Z. 1999. Indexing large metric spaces for similarity search queries.
ACM Transactions on Database Systems (TODS) 24, 3, 361–404.

Chakrabarti, K. and Mehrotra, S. 2000. Local dimensionality reduction: A new approach
to indexing high dimensional spaces. In International Conference on Very Large Data Bases.
89–100.

Domeniconi, C., Peng, J., and Gunopulos, D. 2002. Locally adaptive metric nearest-neighbor
classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 9, 1281–
1285.

Egecioglu, Ö. and Ferhatosmanoglu, H. 2000. Dimensionality reduction and similarity dis-
tance computation by inner product approximations. In International Conference on Informa-
tion and Knowledge Management. 219–226.

Faloutsos, C. and Lin, K. I. 1995. FastMap: A fast algorithm for indexing, data-mining and
visualization of traditional and multimedia datasets. In ACM International Conference on
Management of Data (SIGMOD). 163–174.

Gionis, A., Indyk, P., and Motwani, R. 1999. Similarity search in high dimensions via hashing.
In International Conference on Very Large Databases. 518–529.

Hastie, T. and Tibshirani, R. 1996. Discriminant adaptive nearest-neighbor classification. IEEE
Transactions on Pattern Analysis and Machine Intelligence 18, 6, 607–616.

Hinneburg, A., Aggarwal, C. C., and Keim, D. A. 2000. What is the nearest neighbor in high
dimensional spaces? In International Conference on Very Large Data Bases. 506–515.

Hjaltason, G. and Samet, H. 2003a. Properties of embedding methods for similarity searching
in metric spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 5,
530–549.

Hjaltason, G. R. and Samet, H. 2003b. Index-driven similarity search in metric spaces. ACM
Transactions on Database Systems 28, 4, 517–580.

Hristescu, G. and Farach-Colton, M. 1999. Cluster-preserving embedding of proteins. Tech.
Rep. 99-50, CS Department, Rutgers University.

Huttenlocher, D., Klanderman, D., and Rucklige, A. 1993. Comparing images using the

Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 9,
850–863.

Jacobs, D. W., Weinshall, D., and Gdalyahu, Y. 2000. Classification with nonmetric distances:
Image retrieval and class representation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 22, 6, 583–600.

Kanth, K. V. R., Agrawal, D., and Singh, A. 1998. Dimensionality reduction for similarity
searching in dynamic databases. In ACM International Conference on Management of Data
(SIGMOD). 166–176.

Keogh, E. 2002. Exact indexing of dynamic time warping. In International Conference on Very
Large Data Bases. 406–417.

Koudas, N., Ooi, B. C., Shen, H. T., and Tung, A. K. H. 2004. LDC: Enabling search by
partial distance in a hyper-dimensional space. In IEEE International Conference on Data
Engineearing. 6–17.

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

ACM Transactions on Database Systems · 35

Kruskall, J. B. and Liberman, M. 1983. The symmetric time warping algorithm: From contin-

uous to discrete. In Time Warps. Addison-Wesley.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. 1998. Gradient-based learning applied
to document recognition. Proceedings of the IEEE 86, 11, 2278–2324.

Li, C., Chang, E., Garcia-Molina, H., and Wiederhold, G. 2002. Clustering for approximate
similarity search in high-dimensional spaces. IEEE Transactions on Knowledge and Data
Engineering 14, 4, 792–808.

Paredes, R. and Vidal, E. 2000. A class-dependent weighted dissimilarity measure for nearest
neighbor classification problems. Pattern Recognition Letters 21, 12, 1027–1036.

Roweis, S. and Saul, L. 2000. Nonlinear dimensionality reduction by locally linear embedding.
Science 290, 2323–2326.

Sahinalp, S. C., Tasan, M., Macker, J., and Özsoyoglu, Z. M. 2003. Distance based indexing
for string proximity search. In IEEE International Conference on Data Engineering. 125–136.

Sakurai, Y., Yoshikawa, M., Uemura, S., and Kojima, H. 2000. The A-tree: An index structure
for high-dimensional spaces using relative approximation. In International Conference on Very
Large Data Bases. 516–526.

Schapire, R. and Singer, Y. 1999. Improved boosting algorithms using confidence-rated pre-
dictions. Machine Learning 37, 3, 297–336.

Tenenbaum, J., Silva, V. d., and Langford, J. 2000. A global geometric framework for nonlinear
dimensionality reduction. Science 290, 2319–2323.

Traina, Jr., C., Traina, A., Seeger, B., and Faloutsos, C. 2000. Slim-trees: High performance
metric trees minimizing overlap between nodes. In 7th International Conference on Extending
Database Technology (EDBT). 51–65.

Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., and Keogh, E. 2003. Indexing multi-
dimensional time-series with support for multiple distance measures. In ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. 216–225.

Wang, X., Wang, J. T. L., Lin, K. I., Shasha, D., Shapiro, B. A., and Zhang, K. 2000. An
index structure for data mining and clustering. Knowledge and Information Systems 2, 2,
161–184.

Weber, R. and Böhm, K. 2000. Trading quality for time with nearest-neighbor search. In In-
ternational Conference on Extending Database Technology: Advances in Database Technology.
21–35.

Weber, R., Schek, H.-J., and Blott, S. 1998. A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In International Conference on Very
Large Data Bases. 194–205.

White, D. A. and Jain, R. 1996. Similarity indexing: Algorithms and performance. In Storage

and Retrieval for Image and Video Databases (SPIE). 62–73.

Yi, B.-K., Jagadish, H. V., and Faloutsos, C. 1998. Efficient retrieval of similar time sequences
under time warping. In IEEE International Conference on Data Engineering. 201–208.

Yianilos, P. 1993. Data structures and algorithms for nearest neighbor search in general metric
spaces. In ACM-SIAM Symposium on Discrete Algorithms. 311–321.

Young, F. and Hamer, R. 1987. Multidimensional Scaling: History, Theory and Applications.
Lawrence Erlbaum Associates, Hillsdale, New Jersey.

Zezula, P., Savino, P., Amato, G., and Rabitti, F. 1998. Approximate similarity retrieval with
M-trees. The VLDB Journal 4, 275–293.

ACM Transactions on Database Systems, Vol. ?, No. ?, ? 20?.

