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Abstract

While most time-series data mining research has concentrated on providing solutions for
a single distance function, in this work we motivate the need for a single index structure that
can support multiple distance measures. Our specific area of interest is the efficient retrieval
and analysis of trajectory similarities. Trajectory datasets are very common in environmental
applications, mobility experiments, video surveillance and are especially important for the dis-
covery of certain biological patterns. Our primary similarity measure is based on the Longest
Common Subsequence (LCSS) model, which offers enhanced robustness, particularly for noisy
data, which are encountered very often in real world applications. However, our index is able to
accommodate other distance measures as well, including the ubiquitous Euclidean distance, and
the increasingly popular Dynamic Time Warping (DTW). While other researchers have advo-
cated one or other of these similarity measures, a major contribution of our work is the ability to
support all these measures without the need to restructure the index. Our framework guarantees
no false dismissals and can also be tailored to provide much faster response time at the expense
of slightly reduced precision/recall. The experimental results demonstrate that our index can help
speedup the computation of expensive similarity measures such as the LCSS and the DTW.

1 Introduction

In this work we present an efficient, compact, external memory indexing technique for fast discovery
of similar trajectories. Trajectory data are common in many diverse fields, including meteorology,
GPS tracking, wireless applications, video tracking [8], motion capture [47], etc. Recent advances
in mobile computing, sensor networks and GPS technology have made it possible to collect large
amounts of spatiotemporal data. Consequently, there is an increasing interest in performing data
analysis tasks [6, 46]. In mobile computing, users equipped with mobile devices move in space and
register their locations at different time instants to spatiotemporal databases via wireless links. In
environmental information systems, applications that track animal migrations, cyclone trajectories
[13] etc., produce large datasets by storing locations of observed objects over time. Human motion
data generated by simultaneously tracking various body joints can also be considered as multi-
dimensional trajectories. In the field of computer graphics a fundamental operation is clustering

similar movements, which leads to a multitude of applications such as interactive generation of



motions [4]. Spatiotemporal data are also produced by migrating particles in biological sciences,
focusing on the discovery of subtle patterns during cellular mitoses [49]. In general, any dataset
that involves storage of multi-attribute data sequences can be considered and treated as a set of
multi-dimensional trajectories.

Some very important data mining tasks for multi-dimensional trajectories involve the discovery
of objects that move similarly or follow closely given query patterns. An important consideration
for these operations is the similarity /distance measure that will be used for discovering the most
appropriate trajectories (e.g., Euclidean distance). A major difficulty that affects the choice of
a good similarity measure is the presence of noise (introduced due to electromagnetic anomalies,
transceiver problems, etc.). Another, is that objects may follow similar motion patterns (spatial
domain) but at different rates (temporal domain). Hence, the similarity models should be robust
to noise, and support elastic and imprecise matches.

For some applications, choosing the Euclidean distance as the similarity model may produce poor
results because its performance degrades rapidly in the presence of noise and it is also sensitive to
small variations in the time domain. This work concentrates on two similarity/distance models:
The first is an extension of Dynamic Time Warping (DTW) for higher dimensions (a distance
measure). (Note that virtually all research which uses the DTW distance has considered only the
1D case. Here, a formulation for sequences of arbitrary dimensions is presented.) The second model
is a modification of the Longest Common Subsequence (LCSS), specially adapted for continuous
values (a similarity measure). Both measures represent a significant improvement in accuracy of
classification, and precision/recall of indexing, compared to the Euclidean distance. Moreover, LCSS
is more robust than DTW under noisy conditions with many outliers [50].

By incorporating the ability to allow warping in time as a requirement to our model our algo-
rithms are instantly challenged with quadratic execution time. Nevertheless, to speedup execution
one can devise low cost, upper/lower-bounding functions. In that respect, we introduce a fast pre-
filtering scheme that returns upper(lower)-bound estimates for the LCSS(DTW) similarity(distance)
between the query and the indexed trajectories. Apart from providing upper/lower-bounding mea-
sures that guarantee no false dismissals, similarity/distance approximations that significantly re-
duce index response time are also proposed. Finally, an indexing technique that can simultaneously
support a variety of similarity /distance measures, is presented.

In order to index the trajectories and be able to use the aforementioned similarity models, we
propose an indexing technique that works by approximating the trajectories with multi-dimensional
MBRs and storing them in an R-tree [25]. For a given query, a Minimum Bounding Envelope (MBE)
that covers all the possible matching areas of the query under warping conditions is constructed.
The MBE is itself decomposed into MBRs and probed in the R-tree, which helps efficiently discover
all candidate trajectories that could potentially be similar to the query. The index is compact
and its construction time scales well with the trajectory length and the database size, allowing the
suggested method to be used for massive data mining tasks.

The two most significant advantages of this approach are generality and flexibility. The user is



given the ability to pose queries of variable warping length without the need to reconstruct the index.
By adjusting the width of the bounding envelope of the query the proposed method can support
Euclidean distance, constrained warping, and full warping. Also, the user can choose between faster
retrieval and approximate solutions, or exact answers at the expense of prolonged execution time.
In both situations, experimental results indicate that the proposed solution is significantly faster
than sequential scan.

The main contributions of this work are:

m We present the first external memory index for multi-dimensional trajectories that supports
multiple similarity/distance functions (such as LCSS, DTW and Euclidean), without the need to
rebuild the index.

m We give efficient techniques for upper(lower)-bounding and for approximating the LCSS(DTW)
for a set of trajectories. We incorporate these techniques into the indexing framework.

m We provide a flexible method that allows the user to specify queries of variable warping length.
The technique can be tuned to optimize the retrieval time or the accuracy of the solution.

The rest of the paper is organized as follows. In section 2 related work is presented. In section
3 we formalize the new similarity functions by extending the LCSS and DTW models. Section 4
discusses index construction and Section 5 presents available methods for producing efficient trajec-
tory approximations. Section 6 describes the proposed pre-filtering scheme and proves the claim of
no false dismissals. Section 7 discusses various possible optimizations and Section 8 discusses how
the proposed index can support multiple distance measures without the need for rebuilding. Section
9 provides the experimental evaluation of the accuracy and efficiency of the proposed approach and
section 10 illustrates some real world applications that can utilize our methodology. Finally, Section

11 concludes the paper and summarizes our contributions.
2 Related Work

Previous work on trajectory similarity is mostly related with time-series analysis, which has con-
centrated on the use of metric L,-norms. The advantage of this simple metric is that it enables
efficient indexing by utilizing a dimensionality reduction technique [2, 51, 18]. On the other hand,
the model cannot deal well with outliers and is very sensitive to small distortions in the time domain
([50]). There are a number of interesting extensions to the above model to support transformations
such as scaling [12, 43|, shifting [12, 22|, normalization [22] and moving average [43]. Recent works
that use Euclidean metrics include [30, 28]|. A domain independent framework for defining queries
in terms of similarity of objects is presented in [27].

Other techniques for defining time-series similarity are based on extracting features (Landmarks
[39] or signatures [16]) from each series. Another approach uses the directional characteristics of a
sequence at regular time intervals [42]. Ge and Smyth [21] present a sequence similarity model that
is based on probabilistic matching using Hidden Markov Models. Their approach, however, does
not scale well for large datasets. A recent method for clustering trajectory data is due to Gaffney
and Smyth [19]; it uses a variation of the Expectation Maximization algorithm to cluster small sets

of trajectories. This method is a model based approach that has severe scalability issues. All work



referenced above has concentrated primarily on 1-dimensional time-series only. Techniques that
deal with multi-dimensional sequences appeared in [35, 29]. Nevertheless, these approaches support
only the Euclidean distance.

Even though the vast majority of database/data mining research on time-series has focused on
the Euclidean distance, virtually all real world systems that need to discover similarities utilize
measures that allow time warping. In retrospect, this is not very surprising since most real world
processes can evolve at varying rates. For example, in bioinformatics it is well understood that
functionally related genes will express themselves in similar ways but possibly at different rates. As
expected, DTW has been used for gene expression data mining [1, 5]. In that respect, chemical
and industrial processes can exhibit, overall, similar patterns that are slightly offset in the time
domain due to minor changes in the environment. Gollmer, and Posten [23] have demonstrated
that using DTW allows robust detection of such patterns in real data. Dynamic Time Warping is a
ubiquitous tool in the biometric/surveillance community; it has been used for tracking time-series
extracted from video [20], classifying handwritten text [45, 37| and even fingerprint indexing [34].
Finally, perhaps the most familiar example of easily classifiable patterns which, nevertheless, cause
problems to L, metrics, are electrocardiograms. The cardiological community has used DTW for
several decades [48].

While the above examples testify to the utility of a time warped distance measure, they all echo
the same complaint: DTW has serious scalability issues. Work that attempted to mitigate its large
computational cost has appeared in [33] and [52], where lower bounding measures are introduced
for speeding up execution. However, these lower bounds can be very loose approximations of the
original distance, especially for normalized data. In [38] a different approach based on suffix trees
was used for indexing DTW. Nonetheless, the index required excessive disk space (about 10 times
the size of the original data).

The flexibility provided by DTW is very important. However, its effectiveness deteriorates for
noisy data since by matching all sequence points it also matches the outliers, distorting the true
distance between the sequences. An alternative approach is based on Longest Common Subsequence
(LCSS), which is a variation of the edit distance [36]. The basic idea is to match two sequences by
allowing them to stretch without rearranging the order of the elements but permitting some elements
to remain unmatched. Using the LCSS of two sequences, one can define a distance measure using
the length of the matched subsequence [3, 10, 9, 14]. In [50] a main memory index for LCSS was
proposed. It also demonstrated that while LCSS presents similar advantages to DTW it does not
share its volatile performance in the presence of outliers.

The work of [31] is closest in spirit to our approach, however, it only addresses 1-dimensional
time-series and supports a single distance measure. The author uses constrained DTW as the dis-
tance function, and creates an envelope around all indexed sequences. The envelope is approximated
by a modified version of a Piecewise Approximation, which is later stored as a set of equi-length
MBRs in an R-tree [25]. A lower bounding function that produces significantly tighter approxima-

tions of the original distance than the previous approaches is also introduced. However, by using



DTW such an approach is susceptible to high bias of outliers. Also, the fixed MBR size (even though
it simplifies the index operations) can lead to degenerate approximations of the original sequence.
Moreover, the embedding of the envelope in the indexed sequences can slow the index construction
time and limit the user’s query capabilities to a predefined warping length.

The use of LCSS as our primary similarity measure lends itself to a more natural use of the R-tree,
where the similarity estimates are computed by simply calculating MBR intersections. Additionally,
unline all other work, the proposed index can support multiple distance measures and since it is not

constructed for a specified matching window, the user can pose queries of variable warping length.
3 Distance Measures

In this section we present extension of the LCSS and DTW models to describe the similarity between

trajectories.
3.1 LCSS Model For Multi-dimensional Trajectories

The original LCSS model refers to 1-dimensional sequences, it must therefore be extended to the
multi-dimensional case. In addition, the LCSS paradigm matches discrete values, however in our
model we want to also allow matchings when the values are within a certain range in space and
time (note that this also helps in avoiding distant and degenerate matchings).

Let’s assume that measurements are taken at fixed and discrete time intervals. If this is not the
case then interpolation can be used [40, 24]. Let A and B be 2-dimensional trajectories with sizes n
and m respectively, where A = ((az,1,ay,1);- -, (@zn,ay;n)) and B = ((bz,1,by,1),- -, (bzm, bym))-
Let Head(A) = ((az,1,0y,1),- -+, (@zn—1,8yn-1))-

Definition 1 Given integers 6 and €, we define LCSS5 (A, B) as follows:
(0 if A or B is empty
1+ LCSSs.(Head(A), Head(B))
if  |agn—brm| <€
and |ayn— by m| < €
and |n —m| <4
max(LCSSs,.(Head(A), B),
LCSS;5.(A, Head(B))),
L otherwise

LCSSs5(A,B) = <

Constant ¢ controls the flexibility of matching in the time domain and constant € is the matching
threshold is space. This LCSS model can be computed using dynamic programming. Its time
complexity is in the order of O(d(n + m)), if we only allow a matching window 4 in time [14]. An
instance of the dynamic programming execution between two trajectories is depicted in Figure 1,
where the gray region indicates the matching window in time. Extensions to more dimensions are
straightforward.

The computed value of LCSS is unbounded and depends on the length of the compared sequences.
In order to support sequences of variable lengths, the values have to normalized. One can derive a

normalized distance based on the LCSS similarity as follows:
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Figure 1: Dynamic programming computation of LCSS. The matching windows in time is indicated
by the gray area (6 = 6).

Definition 2 The distance Ds . expressed in terms of the LCSS similarity between two trajectories

A and B is given by:
LCSSs,(A,B)

Ds (A, B)=1— 22
e ) min(n,m)

(1)

3.2 DTW Model For Multi-dimensional Trajectories

This section presents an extension of the original DTW function as described by Berndt and Clifford

[7] for multi-dimensional trajectories. For simplicity we talk about 2-dimensional trajectories.

Definition 3 The DTW distance between 2-dimensional trajectories A and B is defined as follows:
DTW(A,B) = Ly((tamyn), (boms bym) +
min{DTW (Head(A),
Head(B)), DTW (Head(A), B), (2)
DTW (A, Head(B))}

L, is any Ly-norm. The computation of DTW utilizes a dynamic programming technique similar
to LCSS. Again, constraining the matching region within §, the time required to compute DTW
is in the order of O(é(n + m)), the same with LCSS. To normalize distances between sequences
of different lengths, the quantity in equation 3 should be normalized by the length of the warping

path. Figure 2 shows an example of a DTW matching between two trajectories.
3.3 Constraining the Warping

We have already mentioned that restricting the allowed warping length in time, can help speed up the

execution of the dynamic programming algorithms substantially. However, as we will demonstrate
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Figure 2: DTW matching between two 2-dimensional trajectories.

(using real datasets) the restrained matching window can offer more advantages:

1. For most datasets there is no need to perform full length warping. In practice, constraining
the time warping to be at most 20% of the sequence’s length, proves to be sufficient in most
applications. Usually, convergence in the pairwise similarity between sequences is observed,
after a certain warping length. Therefore, allowing wider warping at the expense of prolonged

execution time, would not yield substantial changes in the computed similarity.
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Figure 3: Two words of the cameraMouse dataset (two instances each).

Using the Camera Mouse program [8], we have obtained multiple instances of various words
created by tracking human movement over time while utilizing a ‘virtual keyboard’. In this
manner, spatiotemporal sequences representing various words were collected (Figure 3). In

figure 4 one can observe the trend in the computed LCSS similarity, for increasing warping
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Figure 4: Pairwise LCSS similarity over increasing warping windows).

lengths, for five pairwise computations. It is apparent that the similarity seems to follow
the law of diminishing returns, since warping length larger than 20% does not change the
computed sequence similarity. Similar behaviour was observed for all the datasets we had at

our disposal.

. For certain datasets extended warping not only yields no additional gains, but it also hurts
accuracy. The following simple experiment was performed: We tried to label each sequence
of the test datasets using a “leave-one-out” classification scheme. Therefore, each trajectory
was given the label of its nearest neighbor among all remaining sequences in each iteration.
Figure 5 illustrates the accuracy results obtained for the cameraMouse dataset and a subset
of the Australian Sign Language (ASL) dataset '. While for the cameraMouse data extensive
warping does not improve accuracy, in the case of ASL increasing the warping to more than
30%, in fact, penalizes accuracy. It is apparent that excessive matching envelopes not only
distort the true distance, but also “force” instances of words from different classes to match
with one another by allowing long and degenerate matching correspondences. Very similar

results on the utility of tight constraints have been noted in [44].
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Figure 5: “Leave-one-out” classification accuracy for two datasets. We observe that excessive warp-

ing can hurt the performance in certain datasets.

Clearly, constraining the time warping, not only improves running time, but is essential for

improving classification/clustering accuracy as well.

1h‘l:tp ://kdd.ics.uci.edu/databases/auslan2/auslan.data.html



4 Index Construction

Even though imposing a matching window ¢ can help speedup the execution, the computation can
still be quadratic when ¢ is a significant portion of the sequence’s length. Therefore, comparing a
query to all the trajectories becomes intractable for large databases. We are seeking ways to avoid
examining the trajectories that are very distant to the given query. This can be accomplished by
discovering a close match to the query, as early as possible. A fast pre-filtering step can be employed
that eliminates the majority of distant matches. Only for some qualified sequences will the costly
(but accurate) quadratic time algorithm be executed. This scheme is shown in figure 6 and has also

been successfully used in [52, 31]. There are certain preprocessing steps that need to be followed:

Query
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Figure 6: Very distant trajectories can be discarded by using a fast pre-filtering step. For the
remaining trajectories an expensive, but accurate, similarity measure can be used.

1. The trajectories are segmented into MBRs, which are stored in an R-tree.

2. Given a query @, the areas of possible matching are discovered by constructing its Minimum
Bounding Envelope (MBEg).

3. MBE is decomposed into MBRs that are probed in the index.

4. Based on the MBR intersections, similarity estimates are computed and the exact LCSS (or

DTW) is performed only on the qualified trajectories.
These steps are illustrated in figure 7. The following sections explain in detail how these steps can
be applied when using the LCSS and DTW models.
4.1 Upper-Bounding the LCSS

Consider first a 1-dimensional trajectory and let sequence A = (az,1,...,0az,). Ignoring for now
the parameter €, we would like to perform a very fast LC'SSs match between sequence A and some

query @ = (¢g,1,---,9z,n). Suppose that we replicate each point ¢, ; for § time instances before
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Figure 7: An 1-dimensional example of the proposed approach. The query is extended into a
bounding envelope, which in turn is approximated with a set of MBRs. Overlap between the query
and the index MBRs suggest areas of possible matching and yield candidate trajectories.

and after time 4. The envelope that includes all these points defines the areas of possible matching.

Everything outside this envelope can never be matched.

40 pts
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Figure 8: The Minimum Bounding Envelope (MBE) within ¢ in time and e in space of a sequence.
Everything that lies outside this envelope can never be matched.

We call this envelope, the Minimum Bounding Envelope (MBE) of a sequence. Once the match-
ing within € in space is incorporated, the new envelope should extent e above and below the original
envelope in space (Figure 8). The notion of a bounding envelope can be trivially extended to more
dimensions. For instance, M BE(4, €) for a 2-dimensional trajectory Q = ((¢x,1,9y,1);-- - > (dz,n: Qy,n))

covers the following area:
EnvLow < MBE(d,¢) < EnvHigh,
where for dimension d at position i:
{ EnvHighg; = max(qq; +€) ,[i—j] <o

EnvLowg,; = min(qa,; —€) ,li—j| <d

10



The LCSS similarity between the envelope of ) and a sequence A is defined as:

LCSS(MBEq,A) =

n
i=1

1 if A[i] within envelope
0 otherwise

For example, in figure 8 the LCSS similarity between M BEg and sequence A is 46. This value
represents an upper-bound of the similarity of () and A. One can use the MBE(g to compute a

lower-bound on the distance between trajectories, as well:

Lemma 1 For any two trajectories Q and A the following holds: Ds (M BEg, A) < Ds((Q,A),

Proof (Sketch): D; (MBEg,A) =1 — LC*jif‘;((‘g?ﬁ?’A), therefore it is sufficient to show that:

LCSSs5(MBEg,A) > LCSS5.(Q,A). This is true since MBEg by construction contains all
possible areas within ¢ and € of the query ). Therefore, no possible matching points will be missed.
O

4.2 Lower-Bounding the DTW

Before presenting our lower-bounding approach for the DTW, we will briefly revisit other lower-
bounds that appeared in the literature. While referring the interested reader to the original papers
for detailed explanations, below we give a visual intuition and brief description of each.

Note that both these lower-bounding functions where originally defined only for 1-dimensional
time-series (and are explained below for the 1-dimensional case). However their extensions to multi-

dimensional time-series are straightforward.
4.2.1 Existing lower-bounding measures

The lower-bounding function introduced by Kim et al. [33]| (hereafter referred to as LB-Kim),
works by extracting a 4-tuple feature vector from each sequence. The features are the first and last
elements of the sequence, together with the maximum and the minimum values. The maximum
between the squared differences of corresponding features is reported as the lower-bound. Figure 9

illustrates the idea.

o 5 10 15 20 25 30 35 40

Figure 9: A visual intuition of the lower-bounding measure introduced by Kim et al. The maximum
of the squared difference between the first (A), last (D), minimum (B) and maximum points (C) of
the two sequences is returned as the lower-bound.

The lower-bounding function introduced by Yi et al. [52] (hereafter referred to as LB-Yi) takes

advantage of the observation that all the points in one sequence that are larger (smaller) than the

11



maximum (minimum) of the other sequence must contribute at least the squared difference of their
value and the maximum (minimum) value of the other sequence, to the final DTW distance. Figure
10 illustrates the idea.

/\ max(A)

min(A)

o

o 5 10 15 20 25 30 35 40

Figure 10: A visual intuition of the lower-bounding measure introduced by Yi et al. The sum of the
squared length of the gray lines represents the minimum of the corresponding points’ contribution
to the overall DTW distance, and thus can be returned as the lower-bounding measure.

Note that while LB-Kim is trivially indexable, LB-Yi is not (since it requires the original query).
Its utility comes from its use in conjunction with a technique for approximate indexing of DTW
that utilizes FastMap [17]. The idea is to embed the sequences into Euclidean space such that
the distances structure of the original space is approximately preserved. Then, a traditional multi-
dimensional index structure can be used to index the Euclidean space. The LB-Yi function is used

to prune some of the inevitable false hits that will be introduced by this method.

4.2.2 Lower Bounding the multidimensional DTW distance

In order to approximate the DTW distance first we construct the MBE of the query @, described by
a low and high envelope (as defined above but setting e = 0). Contrary to the LCSS model, instead
of calculating overlapping regions we evaluate the distance of the M BEq from all other sequences.
For sequences () and A with dimensionality D, the distance between A and M BE is:

D n (ad,i — Em}Highd,i)z if Agz,; > Eanighd,i
DTW(MBEqg, A) = Z Z (aq,; — EnvLowg;)*  if az; < EnvLowg;
d=1é=1 | ( otherwise

The function can be perceived as the Euclidean distance between any part of the candidate
matching sequence not falling within the envelope and the nearest (orthogonal) corresponding sec-
tion of the envelope of @), as depicted in Figure 11. This lower bound could be seen as a generalization
for multidimensional time-series of the technique proposed in [31].

It can be proven that this distance lower-bounds the actual time warping distance. A proof for
the 1-dimensional case appeared in [31]. The extension to multiple dimensions is straightforward.
This measure has since been extended and used by several researchers, including [53, 45].

Since the tightness of this bound is proportional to the number and length of the gray hatch
lines, we can see, in this example at least, that the new lower-bound provides a tighter bound than

LB-Kim or LB-Yi. It should also be noted that the proposed measure will always be at least as

12
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Figure 11: An illustration of the lower-bounding function for DTW. The original sequence @ (shown
dotted), is enclosed in a Minimum Bounding Envelope. The squared sum of the distances from every
part of sequence A not falling within M BEg, to the nearest orthogonal edge of M BE is returned
as the lower-bound.

good as LB-Yi, which is a special case arising when the bounding envelope is allowed to cover the
whole sequence length.

In the last two sections we have described ways to lower-bound the similarity /distance (whether
it is computed using LCSS or DTW). According to the GEMINI framework [2], we can use the new
distance functions to create an index that guarantees no false dismissals. However, the described
upper/lower-bounds can be computed using the raw trajectory data. In the sections that follow
we will approximate the trajectories using a number of MBRs, to accommodate their storage into
a multi-dimensional R-tree. We will show how to compute the upper/lower-bounds using only the

trajectory approximation MBRs.
5 MBR generation

Given a multi-dimensional trajectory (or an MBE) our objective is to minimize the volume of the
sequence using k¥ MBRs. Clearly, the best approximation of a trajectory (or an MBE) using a fixed
number of MBRs is the set of MBRs that completely contain the sequence and minimize the volume

consumption. The following lemma holds:

Lemma 2 Minimizing the volume of the Minimum Bounding Envelope, minimizes the expected

similarity approrimation error.

Four different approaches are considered:

1. k-Optimal. The kK MBRs of a sequence that take up the least volume can be obtained by using
a dynamic programming algorithm that requires O(n2k) time [26], where 7 is the length of the
given sequence. Since this approach is very expensive for large databases, we are motivated

to consider approximate and faster solutions.

2. Equi-Split. This technique produces MBRs of fixed length. It is a simple approach with cost
linear in the length of a sequence. However, in pathological cases increasing the number of
MBRs can result in larger space utilization, therefore the choice of the MBR length becomes

a critical parameter (see Figure 12 for an example).
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Equi-Split, 8 MBRs, Gain = 5.992 Equi-Split, 9 MBRs, Gain = 5.004

Figure 12: (a): 8 MBRs produced using Equi-Split. The volume gain over having only one MBR is
5.992. (b): Segmenting into 9 MBRs decreases the volume gain to 5.004. So, disk space is wasted
without providing a better approximation of the trajectory. (¢): 8 MBRs using Greedy-Split. The
volume gain over having only one MBR is 9.157. (d): Every additional split will yield better space
utilization. Segmentation into 9 MBRs increases volume gain to 10.595.

3. Random-Split. With this approach the positions where the trajectory is split into consecu-
tive MBRs are produced randomly. As we shall see in our experiments this approach performs
competitive with Equi-Split for a number of datasets [41].

4. Greedy-Split. The Greedy approach is our implementation choice in this paper. Initially,
we assign an MBR to each of the n sequence points and at each subsequent step we merge
the consecutive MBRs that will introduce the least volume consumption. The algorithm has
a running time of O(nlogn). A sketch of the method in shown in Algorithm 1. Alternatively,
instead of assigning the same number of splits to all objects, according to our space require-
ments we can assign a total of K splits to be distributed among all objects. This method can

provide better results, since we assign more splits to the objects that will yield more space
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gain. Also, this approach is more appropriate when one is dealing with sequences of different
lengths. The complexity of this approach is O(K + NlogN), for a total of N objects [26].

Algorithm 1 Greedy-Split
Input: Trajectory T, integer k denoting the number of final MBRs.
Output: A set of MBRs that cover T'.
: for 0<i<ndo
Compute the volume of the MBR produced by merging T; and T;41.
Store the results in a priority queue.
end for
while # M BRs < k do
Using the priority queue merge the pair of consecutive MBRs that yield the smallest increase in
volume.
7: Delete the two merged MBRs and insert the new one in the priority queue.
8: end while

Using more splits always leads to smaller or equal volume consumption. In Figure 12 we examine
how additional MBRs affect the volume gain of Equi and Greedy-split. The volume gain conveys
how much space reduction is achieved using ¥ MBRs when compared to using only one MBR. For
this specific example, when using Equi-Split an additional MBR in fact increases space utilization,
while the Greedy-Split performs better consistently. A similar greedy algorithm is used for splitting
the MBE of the query trajectory @, as well.

6 Quick Pruning of Dissimilar Trajectories

Suppose that we have an index with the segmented trajectories and the user provides a query Q.
Our goal is the discovery of the k closest trajectories to the given query according to the LCSS
similarity. A prefiltering step will aid the quick discovery of a close match to the query, helping
us discard the distant trajectories without using the costly quadratic algorithm. Therefore, in this
phase, we compute estimates of the similarity between the query and the indexed sequences using
their MBRs.

Algorithm 2 shows how to find the closest trajectory to a given query according to the LCSS
similarity. This algorithm can be adjusted to return the kNN sequences simply by comparing with
the k' bestSoFar match. DTW can be handled by reversing the signs in the equations and utilizing
the relevant estimates. Next, we examine possible similarity estimates for LCSS and DTW. Some
of them guarantee that a best match will be found (they lower-bound the original distance or

upper-bound the original similarity), while others provide faster but approximate results.
6.1 Estimates for the LCSS

We will show how to compute estimates of the LCSS similarity based on the geometric properties
of the trajectory MBRs and their intersections. An upper-bound estimate is provided by the length
of the MBR intersection and an approximate estimate is given as a parameter of the intersecting
volume. To formalize these notions first we present several operators.

Each trajectory T can be decomposed into a number of MBRs. The 4, 3-dimensional MBR of
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Algorithm 2 Prune according to LCSS similarity estimates

Input: Query @, Index I with trajectory MBRs, Method
Output: Most similar trajectory to @) is returned

1: Box Env = constructM BE; .(Q)

2: Vector Vg = CreateM BRs(Env) > Vg contains a number of boxes
3: Priority queue PQ + 0 > Keep trajectories sorted according to similarity estimates
4: for each box B in Vg do

5: V' = LintersectionQuery(B) > V contains all trajectory MBRs that intersect with B
6 if Method == Exact then PQ < computeL-SimilarityEstimates(V, B) > upper-bound
7 else PQ + computeV-SimilarityEstimates(V, B) > approximate
8: end for

9: BestSoFar = 0; Best + ()
10: while PQ not empty do
11: E + PQ.top
12: if E.estimate < BestSoFar then break

13: else
14: D = computeLCCS;,(Q, E) > exact
15: if D > BestSoFar then BestSoFar = D; Best < E

16: end while
17: Report Best

T consists of six numbers: M7 ; = {t;,th, Z;, Th, Y1, yn }- Now, let us define the operators ﬂgc), gp)

and [y, between two MBRs Mp; and Mg ;, belonging to objects P and R, respectively:

1. ngc)(Mpyi,MRJ') = ||Intersection||t, (c stands for ’complete’)
where Mg j.x; < Mpj.z; < Mg, j.x) and
Mg ;. < Mp;.xp < Mg j.xp and
Mgy < Mp;.y < Mg j.yp and
Mg j.y < Mpi.yn < MRj.yn
or similarly by rotating Mg ; = Mp;
Therefore, this operator computes the time intersection of two MBR when one fully contains

the other in the x,y dimensions.
2. ﬂgp) (Mpj, Mg ;) = ||[Intersection||;, otherwise (p stands for 'partial’)
3. Ny (Mpg, Mg ;) = ||[Intersection||; * ||Intersection|| * || Intersection||,

We can find upper-bounds or approximate estimates for the similarity:
1. Upper-bound estimates (L-similarity estimate). Such estimates are computed using the
following data structures:

m The list Ly compiete , an element L(P) of which is defined as:

L(P) =5 Mo Me,

where @ is a query and P is a trajectory in the index. So the list stores for each trajectory P the

total time of the intersection between P’s and @’s MBRs. The list records only the intersections
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where a query MBR is fully contained in all spatial dimensions by a trajectory MBR (or vice versa;
see Figure 13, top-right).
m The list Ly partial, an element L(P) of which is defined as:

L(P) =33 Mo, M
m n

This list records for each sequence the total intersection in time for those query MBRs that are not
fully contained within the spatial dimensions of the trajectory MBRs (or vice versa; see Figure 13,
top-left).

Regarding a query @ for any trajectory P, the sum of Ly compiete (P) + Lt partiar(P) will provide
an upper-bound on the similarity of P and Q:

LCSS(P, Q) < Lt,complete(P) + Lt,partial(P)

Subsequently, we can use these estimates to provide a guarantee that no false dismissals will be
introduced.

The reason for the distinction of the L-similarity estimate into two separate lists derives from
the fact that the estimates stored in list L; ,qrti1 can significantly overestimate the LCSS similar-

ity. A more detailed explanation is deferred until Section 7, where potential optimizations will be

delineated.

Intersection between two MBRs The Intersection of MBRs is fully
contained within one MBR

y
u
time

Figure 13: Top-left: Intersection recorded in list L partiar. Top-right: Intersection recorded in list
Ly complete- Bottom-left: Percentage of Volume Intersection kept in Ly .

Common Volume Intersection

2. Approximate estimates (V-similarity estimate). This second estimate is based on the
intersecting volume of the MBRs. This type of estimates are stored in list Ly :

m Any element Ly (P) of list Ly records similarity estimates between trajectory P and query @,
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based on the total volume intersection between the MBRs of P and Q).

A4Q7nr1V’A[Pn
) y M
length ZZ [ Mg m|lv 1Mqmll:

where ||M||y denotes the volume of MBR M and ||M||; its length on the time dimension.

L(P) =

The L-similarity overestimates the LC'SSs . between two sequences A and B and so it can be

deployed for the design of an index structure.

Lemma 3 The use of the L-similarity estimate upper-bounds the LCSSs, similarity between two

sequences A and B and therefore does not introduce any false dismissals.

The V-similarity estimate can be used for approximate query answering. Even though it does
not guarantee the absence of false dismissals the results will be close to the optimal ones, with high
probability. Also, because this estimate provides a tighter approximation of the original distance,
we expect faster response time. Indeed, as we show in the experimental section, index performance

improves while the error in similarity is typically around 5%.
6.2 Estimates for the DTW

When using the DTW distance, the index helps us obtain a lower-bound of the actual distance, by
evaluating the distance of the query MBE and the trajectory MBRs.

Supposing that the time dimension corresponds to d = 1 (from a total of D dimensions), the
MINDIST function between two MBRs ) and P is:

MINDIST(Q, P) > Qﬂ R x a7

2<d<D

|hq,a—1lpal, if hga <lpad
where xq = | [lg,a — hpal, if hpa<lga

0, otherwise

and [, is an operator that computes the intersection of two MBRs in the time dimension. The
overall distance between the MBRs underestimates the true distance of the trajectories, thus no
false dismissals are introduced. Using the MBRs we can also calculate upper-bound estimates on the
distance, something that has not been exploited in previous work [31, 53|. The MAXDIST operator
is defined as:

MAXDIST(Q,P)= | Qﬂ R x 7
2<k<d
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'maa:(hQ,d, hp,a) —min(lQ,q,q,q)
if (hQ,d >hpqa & lga> lP7d)

or (hp,d > hQ,d & lp,d > lQ,d)
where xg = {
maz(hq,q, hp,a) — maz(lg,d;1Q,qa)
max
min(hQ,d, hp,d) - min(lQ,d, lQ,d)

L otherwise

Examples of the operator for various MBR positions are shown in Figure 14.
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Figure 14: Operator MAXDIST between two MBRs.

Sequences with lower-bounds larger than the smallest computed upper-bound can be pruned.
With this additional pre-filtering step the number of actual executions of the exact DTW distance
are significantly reduced. In our experiments we have observed an additional 10-15% speedup in
the total execution time when we also utilized the upper bounds.

A visual representation of the lower and upper bounding for the DTW case is shown in Figure

15.
7 Possible Index Optimizations

In a very large database we expect a significant number of the query MBRs to intersect only with
a small area of the indexed MBRs. Therefore, as an optimization, with each MBR index entry we
could store the percentage of points contained in each of the four quadrants @Q; of @ (Figure 16).
That is:

) __ 100%|Q; points| .
Qi,MBR(j) = MBR(j) points]’ fori=1...4

This information can be used to compute a more accurate estimate of the actual distance between

the query and the trajectory for the intersecting MBRs. This will increase the size of each entry of
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A. Query Q B. Query Envelope

10 15 15

0 5 - o 5 10
C. Envelope Splitting D. Sequence MBRs

E. MINDIST(Q,R) F. MAXDIST(Q,R)

.22

7

' L L
5 o s

Figure 15: A visual intuition of the DTW indexing technique (the one-dimensional case is shown
for clarity). The original query (A) is enclosed in a minimum-bounding envelope (B) like the LCSS
approach. The MBE is split into its MBRs using Equi or Greedy-Split (C). The MBRs of candidate
sequences are stored in the index (D). The minimum and maximum distance between the query
and any sequence in the index can be quickly determined by examining the distances between the
MBRs and the query bounding envelope, as represented by the arrows in (E) and (F).

the index nodes by 4 bytes ( increasing also slightly the index size) and, thus, represents a middle
ground in the case that we don’t want to introduce more splits for the indexed trajectories (which
will significantly increase the space consumption).

A second optimization justifies the separation of the L-estimate in two lists, and it could be
used for producing approximate, but very good quality answers. It is based on the fact that the
estimates stored in list Ly pgreiqi, significantly overestimate the LCSS similarity. We depict this
with an example: In Figure 17 we see the two different types of MBR intersections in time. For
the intersection stored in list Ly pertiqi, €ven though there is only one point in the intersection of
two MBRs, the similarity estimate will be increased by m which is the length of the intersection.
However, for any intersection of length n in time, recorded in the list Ly compiete, We can be sure
that there are n points which could possibly be matched.

Since the partial MBR intersections can be significantly misleading, if we would like to relax
the accuracy of our method in favor of enhanced performance it is instructive to give a weight
0 < wp <1 to all estimates in list Ly pgrtiq- Although, now it is possible to miss the best match
to the query, we are going to find a close match faster, because the estimates (even though not
lower-bounding) will be tighter.

These optimizations were succinctly described here for the purpose of showing the great flexibility
of our framework in balancing retrieval time and accuracy, with minimal or no adjustments in the

index. In the experimental section we will only provide results on the approximate estimates based
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on the common volume intersection between the trajectory MBRs.
8 Supporting Multiple Measures

Here we will explain how the constructed index (based on the MBRs of the trajectories), can support
without modification various distance measures, such as LCSS, DTW, as well as Euclidean distance.

The application of the Minimum Bounding Envelope only on the query suggests that user queries
are not confined to a predefined and rigid matching window J. The user can pose queries of variable
warping in time. In some datasets, there is no need to perform warping, since the Euclidean distance
performs well [32]. In other datasets, by using the Euclidean distance we can find quickly some very
close matches, while using warping we can distinguish more flexible similarities. So, we can start
by using a query with § = 0 (no bounding envelope), and increase it progressively in order to find
more flexible matches (Figure 18).

Additionally, when the user desires to examine kNN similarity based on the DTW distance, it

is instructive to pose a query with initial § = 0 for the following reasons:

1. For queries with constrained envelopes we expect to have faster index response times, since

the query will intersect with fewer MBRs.

2. Since the computation of the Euclidean distance is cheap compared to DTW, by finding a good
Euclidean match fast, we can prune dissimilar matches efficiently because we have discovered

a tight match to the query.

Therefore, our framework offers the unique advantage that multiple distance functions can be
supported in a single index. The indexed sequences have been segmented without any envelope
applied on them and never have to be adjusted again. For different measures, the aspects that

change are:
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Figure 18: By incorporating the bounding envelope on the query our approach can support Euclidean

distance, constrained warping, or full warping. This is accomplished by progressively expanding the
MBE.

1. The creation of the query envelope (splitting with or without envelope)
2. The type of operation between query and indexed MBRs (intersection or distance)

For example, in order to pose queries based on Euclidean distance we follow these steps:

m The query is segmented with no envelope applied on it.

m The MINDIST and MAXDIST operators between MBRs for the Euclidean distance, are identical
to the ones for DTW.

9 Experimental Evaluation

In this section we compare the effectiveness of the various MBR generation methods and we demon-
strate the superiority of our lower-bounding technique for the DTW compared to other proposed
lower-bounds. We describe the datasets we used and present comprehensive experiments regarding
the index performance for the two similarity estimates. In addition, we evaluate the accuracy of
the approximate estimates. All experiments conducted were run on an AMD Athlon 1.4 Ghz with
1GB RAM and 60GB of hard drive.

9.1 MBR Generation Comparison

The purpose of our first experiment is to test the space consumption of the proposed MBR generation
methods. We have used eight datasets with diverse characteristics in order to provide objective
results (Figure 19). The majority of the datasets are real world trajectories, extracted from video-
tracking applications, marine mammals migration patterns etc.

We evaluate the space consumption by calculating the “Average Volume Gain” (AvgVolGain),

which is defined as the percentage of volume when using ¢ MBRs, over the volume when using only
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1. ASL 2. Buoy Sensor 3. Video Track 1 4. Flutter

Y

5. Marine Mammals 6. Word Tracking 7. Random Walk 8. Video Track 2

Figure 19: Datasets used for testing the efficiency of various MBR generation methods.

one MBR, normalized by the maximum gain provided over all methods. The result is averaged
over the total number of experiments (|splitEzp|) run with different number of splits ? for each
method. This number is usually 5, describing 20,40,60,80 and 100 splits. Specifically, the average

gain AvgGain; for splitting method i = equi, greedy, random is defined as:

1 Gain: s
AvgGain; = Z ULr At split

. * .
|split Exp| o maz; (VG ain; spiit)

Greedy
Equi
7 Random

Dataset

Figure 20: The Greedy-Split MBR generation algorithm presents the highest volume gain by pro-
ducing MBRs that consume consistently less space over a number of datasets and for diverse number
of generated MBRs

AvgVolGain is a number between 0 and 1, where higher numbers indicate increased volume
gain (or less space consumption) against the competitive methods. For the random split we run
each experiment 100 times and we averaged the results. In Figure 20 we plot the average volume
gain for all eight datasets. The Greedy-Split algorithm produced MBRs that consume at least half
the space of Equi-Split. Equi-Split offers slightly better results than producing MBRs at random.

By splits we mean the number of MBRs that approximate the trajectory
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| DATASET || EQs20,d5 | GRs20,d5 | EQs40,d5 | GRs40,d5 || EQs20,d5 | GRs20,d5 | EQs40,d5 | GRs40,d5 || LB-Kim | LB-Yi

| [
ASL 0.732 0.799 0.825 0.856 0.449 0.632 0.588 0.756 0.1873 0.2530
VT1 0.260 0.339 0.453 0.511 0.087 0.136 0.230 0.266 0.0838 0.1692
Marine 0.719 0.750 0.804 0.814 0.226 0.506 0.308 0.608 0.2587 0.4251
‘Word 0.627 0.666 0.761 0.774 0.311 0.361 0.466 0.499 0.0316 0.2116
Random 0.596 0.652 0.701 0.741 0.322 0.384 0.440 0.491 0.1389 0.2067
VT2 0.341 0.431 0.498 0.569 0.210 0.296 0.363 0.437 0.2100 0.5321

Table 1: Some indicative results of how close our similarity estimates are to the exact value (for 20
and 40 splits & d = 5%). For all datasets the Greedy-Split approach provides the closest similarity
estimates to the actual similarity.

The volume gain of Greedy-Split was smaller only for the buoy sensor, which is a very busy and
unstructured signal. This experiment validates that our choice to use the Greedy-Split method was
correct. Since the indexed MBR trajectories will take less space, we also expect tighter similarity

estimates, therefore fewer false positives.
9.2 Tightness of Bounds

In table 1 we show how close our similarity estimates are (for LCSS and DTW) to the actual
similarity between sequences. Numbers closer to 1 indicate higher similarity to the value returned
by the exact algorithm. To our best knowledge, this paper introduces the first upper-bounding
technique for LCSS, that is why we only report results for the equi-split and greedy-split method.
For the Dynamic Time Warping we compare our lower bounds with LB-Kim and LB-Yi. These
lower-bounds originally referred to 1-dimensional time-series but here we extended them for higher
dimensions, in order to provide unambiguous results about the tightness of our estimates. Note that
the previously proposed methods operate on the raw data. Our approach can still provide tighter
estimates, while operating only on the trajectory MBRs. Using the raw data our experiments
indicate that we are consistently 2-3 times better than the best alternative. However, since our
index operates on the segmented trajectories we only report the results on the MBRs.

The results clearly indicate that the Greedy-Split method approximates the similarity consis-
tently tighter than the Equi-Split. In table 1 only the results for § = 5% of the query’s length are
reported, but similar results are observed for increasing values of §. It is evident from the table that

using our method we can provide very tight lower bounds of the actual distance.
9.3 Index performance

We tested the performance of our index for LCSS using the upper-bound and the approximate
similarity estimates, and compared it to the sequential scan. We also report results for DTW using
the proposed lower and upper-bounds for pruning. The performance measure used is the total
computation time required for the index and the sequential scan to return the nearest neighbor
for the same one hundred queries. For the linear scan, one can also perform early termination
of the LCSS (or the DTW) computation. Therefore, the LCSS execution can be stopped at the

point where one is sure that the current sequence will not be more similar to the query than the
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bestSoFar. We call this optimistic linear scan. Pessimistic linear scan is the one than does not reuse
the previously computed similarity values and can be an accurate time estimate when the query
match resides at the end of the dataset. We demonstrate the index performance relative to both

types of linear scan, because this provides a realistic upper or lower-bound on the index speedup.
9.3.1 Dataset generation

In order to test the index scalability we needed to construct large realistic multi-dimensional
datasets. To this end, we utilized the aggregation of our eight real datasets as seeds for generating
more variations of them. We create multiple copies of the original trajectories by incorporating the
following features:

m Addition of small variations in the original trajectory pattern

m Addition of random compression and decompression in time

Had we added random Gaussian noise to the original trajectory, this would have resulted to
unnatural time series with large peaks at various positions. Therefore, the small variations in the
pattern were added by interpolating peaks of Gaussian noise using splines [15]. In this manner we
are able to create the smooth variations that existed in the original datasets (Figure 21).

The final dataset consisted of 210 ... 216 trajectories. Taking under consideration that the average
trajectory size is around 500 points, this resulted to a database with more than 16 million 2-
dimensional points. The trajectories have been normalized by subtracting the average value in each

direction of movement.

Original Trajectory Noise - Interpolating Gaussian Peaks
1000
300
800 200
600 100
400 0
200 -100
200 400 600 800 1000 200 400 600 800 1000
Adding time-shifting Final Copy = Original + Noise + Time Shift

1000 1200

~ Ongal
— - Original
500 1000

800
600
600

400 400

200 200

200 400 600 800 1000 200 400 600 800 1000

Figure 21: Creation of the multiple copies from the real datasets by adding smooth variations in
the pattern and time shifting at random positions.
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Figure 22: Index performance for LCSS. For small warping windows the index can be up to 5 times
faster than sequential scan without compromising accuracy. The gray regions indicate the range of
potential speedup.
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Figure 23: Using the approximate similarity estimates for the LCSS, the response time can be more
than 7 times faster.

9.3.2 Results on the LCSS upper-bound estimates

The index performance is influenced be three parameters: the size of the dataset, the warping length
0 (as a percentage of the query’s length) and the number of trajectory MBRs. For all experiments
the parameter e (matching in space) was set to std/4 of the query, which provided good and intuitive
results.

m Dataset size: In figure 22 we can observe how the performance of the index scales with the
database size (for various lengths of matching window). We record the index response time relative
to both optimistic and pessimistic linear scan. Therefore, the gray region in the figures indicates the
range of possible speedup. It is evident that the early termination feature of the sequential scan can
significantly assist its performance. The usefulness of an index becomes obvious for large dataset
sizes, where the quadratic computational cost dominates the I/O cost of the index. For these cases
our approach can be up to 5 times faster than linear scan. In figure 24 we also demonstrate the
pruning power of the index as a true indicator (not biased by any implementation details) about
the efficacy of our index. Using the index we perform 2-5 times fewer LCSS computations than the
linear scan. We observe similar speedup when using the DTW as the distance function in Figure
26.

m Parameter §: The index performance is better for smaller warping lengths. The experiments
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the sequential scan.

record the performance for warping from 5% to 20% of the query’s length. Increasing § values
signify larger bounding envelopes around the query, therefore larger space of search and less accurate
similarity estimates. The graphs suggest that an index cannot be useful under full warping (when
the data are normalized).

m Number of Splits: Although greater number of MBRs for each trajectory implies better
volume utilization, nonetheless more MBRs also lead to increased I/O cost. When we are referring
to x% splits, it means that we have assigned a total of 100/z(> 7, (||Ti]|)) splits, for all sequences
T;. In our figures we provide the 5% splits scenario for the MBRs, which offers better performance
than 10% and 20% splits, since for the last two cases the I/O cost negates the effect of the better
query approximation. The index space requirements for 5% splits is less than a quarter of the

dataset size (Figure 27).
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Figure 27: Index size compared to dataset size.
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9.3.3 Results on the LCSS approximate estimates

Here we present the index performance when the volume intersections of the MBRs are used as
estimates of the similarity and the results are shown in Figure 23. We observe that using this
approximate similarity estimate our index performance is boosted significantly. The use of the V-
similarity estimate leads to more tight approximations of the original similarity compared to the
L-similarity estimate, however now we may miss the best match.

Naturally, comes the question of the quality of the results. We capture this by calculating the
absolute difference between the similarity of the best match returned by the index and the best
match found by the sequential scan for each query. Then, we average the results over a number of

queries |q|. Therefore, the Average Similarity Error (ASE) is:

ASE = ﬂ Zq:(|BestMatchindez — BestM atcheghaustive|)
i=1
The results are shown in Figure 25. We can see that the similarity returned by the V-similarity
estimate is approximately within 5% of the actual similarity (5% splits used).
By providing two similarity estimates for the LCSS, the user can decide the trade-off between
expedited execution time and the quality of results. Since by using the latter estimator we can
significantly increase the performance of the index, this is the approach we recommend for mining

large datasets.
10 Test Cases

We present results on some real world applications, utilizing the proposed similarity measures and

indexing scheme.
10.1 Automatic Transcription of Hand-written Manuscripts

The Library of Congress contains more than 54 million manuscripts and there is an imperative need
for preserving these historical documents (Figure 28). Storing these manuscripts in image format
is unrealistic, since only the conversion to text would results in more than 20 Terabytes of data.
Therefore, there is an increasing interest to automatically transcribe these documents. However,
optical character recognition techniques (OCR) cannot be fruitfully utilized in this case due to the
handwritten nature of these documents and due to the degradations of the paper medium.
Recently, new techniques have been proposed that combine trends from pattern recognition
and time-series similarity in order to achieve this difficult task [45]. The basic idea is that one
can first identify the different words in a manuscript, manually annotate a subset of them, and
then automatically classify the remaining words. The process involves the following steps: (i)
From a manuscript image, images of the different words are extracted (word spotting); (ii) Writing
variations (slant/skew/baseline) are corrected for the extracted words; (iii) Features for each image

are extracted. Such features can include the sum of intensity values per column, or the ink/paper
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Figure 28: Part of a George Washington manuscript in the Library of Congress.

transitions per column etc. (Figure 29); (iv) Manual annotations of a word subset are produced;

(v) Classification of the remaining words based on the annotated ones is performed.
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Figure 29: Top: The word ‘governor’ extracted from a George Washington manuscript. Bottom:
One possible time-series feature extracted from every column of the image (sum of intensity values).

The features that are extracted are stored as multi-dimensional time-series. The annotation
process can then use the multi-dimensional extensions of DTW or LCSS measures. In Figure 30 we
see the results of a 3NN search for a variety of words, produced using the techniques analysed in
this work. Next to each image we also depict the feature trajectory that described each word. For
this experiment the two least correlated time-series features were utilized (out of the four that we
had at our disposal).

These results used the DTW as the distance function, but we obtained similar results with the
LCSS. We can observe that the outcome is very promising and even similarly looking words can be

sufficiently discriminated and classified.
10.2 Similarity Search in Motion-Capture Data

The popularity of motion capture, or mocap, in CG movies and 3-dimensional computer games has
motivated the development of many techniques to tackle the laborious problem of motion search

and motion editing. The existence of large libraries of human motion capture has resulted in a
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Figure 30: Manuscript word annotation. 3NN matches based on the extracted time-series features
and utilizing multi-dimensional DTW as the distance measure.

growing demand for content-based retrieval of motion sequences without using annotations or other
meta-data. Using the notions described in this paper, one can address efficiently the issue of rapidly
retrieving perceptually similar occurrences of a particular motion in a long mocap sequence or
unstructured mocap database for the purpose of replicating editing operations with minimal user-
input. One or more editing operations on a given motion are made to affect all similar matching
motions (for example change all walking motions into running motions etc.).

The first step of motion-editing consists of a similarity search portion, where using a query-
by-example paradigm the animator first selects a particular motion, by specifying its start and
end time, and the system searches for similar occurrences in a mocap database (Figure 31). For
maximum usability, the mocap matching engine must provide fast response to user queries over
extended unlabeled mocap sequences, whilst allowing for spatial and temporal deviations in the

returned matches.

Using the techniques described in this paper, each motion is split up in multi-dimensional MBRs
and stored in an index structure [11]. Support for LCSS and DTW similarity /distance measures
caters for noisy motion with variations in the time axis. Therefore one can find matches independent
of the speed at which the mocap data were recorded.

The animator has the crucial ability to interactively select the body areas utilized in the match-
ing, so that, for example, all instances of a walking motion are returned, irrespective of the upper
body motion. The results of such a query are shown in Figure 32. Finally, in the case where
many potential matches exist, the query results can be clustered and presented in a more organized

manner, allowing the animator to rapidly dismiss undesirable classes of matches.
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Figure 31: Matches to the user query motion are returned using an efficient search index, previously
extracted from the motion database.

Figure 32: Some matching results in the motion-capture database for the query: "Find all walking
motions". The final results can be grouped into similar motions using a hierarchical clustering
algorithm and presented to the animator in a more meaningful manner.

11 Conclusions

In this paper we have presented an external memory indexing method for discovering similar multi-
dimensional trajectories. The unique advantage of our approach is that it can accommodate multiple
distance measures. The method guarantees no false dismissals and presents a significant execution
speedup for LCSS and DTW compared to sequential scan. We have shown the tightness of our
similarity estimates and demonstrated the usefulness of our measures in real world applications.
We hope that our effort can act as a bridge between metric and non-metric functions, as well as a

tool for understanding better their strengths and weaknesses.
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